Math 541 Spring 2011 Preparation for the Mid-Term of 11/03/11

Remark. Answers should be written in the following format:

- i) Statement and/or Result.
- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. (20) Definitions.
 - (a) Define the notion of a group $(G, *, 1_G)$.
 - (b) Define the notion of a group G acting on a set X. Denote this action by \cdot .
 - 2. (40) Theory. Suppose we have a group G acting on a set X.
 - (a) Suppose $Y \subset X$ subset. For an element $g \in G$ we define the set $g(Y) = \{g \cdot y; y \in Y\}$. Show that the subset $H \subset G$ given by

$$H = Stab_G(Y) = \{g \in G; g(Y) = Y\},\$$

is a subgroup of G.

- (b) Suppose that $Y \subset X$ is invariant under the action of G, i.e., for EVERY $g \in G$ we have g(Y) = Y.
 - 1. Show that, in this case, for every $g \in G$, the map

$$\begin{aligned} r[g] & : \quad Y \to Y \\ r[g](y) & = \quad g \cdot y, \end{aligned}$$

is a bijection. In particular, $r[g] \in Aut(Y)$.

2. Show that the map

$$\begin{array}{rcc} r & : & G \to Aut(Y), \\ g & \mapsto & r[g], \end{array}$$

is homomorphism, i.e., satisfies $r[g_1 * g_2] = r[g_1] \circ r[g_2]$, where \circ denotes composition of functions.

- 3. (40) Application. Denote by T the natural equilateral triangle around the origin in \mathbb{R}^2 .
 - (a) Define the natural homomorphism

$$r: D_3 = Stab_O(T) \to S_3 = Aut(\{a, b, c\}),$$

where O denotes the group of orthogonal transformations of \mathbb{R}^2 .

(b) Show that this r is an isomorphism, i.e., it is one-to-one and onto.

Good Luck!