Math 541 Spring 2011 Solutions—Homework#8— Orbits,Cosets, Lagrange's Theorem, Fermat's Little Theorem

Remark. Answers should be written in the following format:

- 0) Statement and/or Result.
- i) Main points that will appear in your explanation or proof or computation.
- ii) The actual explanation or proof or computation.
 - 1. Orbits. Describe the set of orbits (=equivalence classes) $G \setminus X$ in the following cases:
 - (a) The set $X = \mathbb{R}^2$, the group G = SO(2) the rotations of the plane, and the action is the natural action, via action of a matrix on a vector.
 - 1. Main points. Geometric meaning.
 - 2. Answer. The geometric meaning of SO(2) is rotations around the origin. So we have that $SO(2) \setminus \mathbb{R}^2$ = the set of circles around the origin.
 - (b) The set $X = \mathbb{R}^2 \{0\}$, the group $G = \mathbb{R}^* = \mathbb{R} \{0\}$, and action is the scaling action of G on X via $a \cdot (x, y) = (a \cdot x, a \cdot y)$.
 - 1. Main points. Lines.
 - 2. Answer. Since any line L, through the origin, in the plane is uniquely determined by a non-zero vector $0 \neq v \in L$, and any two such vectors differ by a multiple scalar $a \neq 0$, we deduce that $\mathbb{R}^* \setminus (\mathbb{R}^2 \{0\}) =$ the set of lines in the plane. Mathematicians denote this space by $\mathbb{P}^1(\mathbb{R})$ and call it the 1-dimensional real projective space.
 - (c) The set X is the collection of equilateral triangles around the origin in the plane \mathbb{R}^2 , the group G = SO(2), and the action is the natural one, induced from the action of rotations on the plane.
 - 1. Main points. Clear.
 - 2. Answer. It is clear that two triangles in the same orbit iff they are congruent.
 - 2. Cosets. In each of the following compute the set of left cosets G/H, and if G is finite verify Lagrange's Theorem $\#G = [G : H] \cdot \#H$, where [G : H] = #(G/H), called the index of H in G.
 - (a) $G = S_3, H = A_3$ the group of even permutations of three letters.
 - 1. Main points. Number of elements.
 - 2. Computation. We have $S_3 = Aut(\{a, b, c\})$. Since $\#S_3 = 6$, $\#A_3 = 3$, and $(a \ b) \notin A_3$, then $S_3 = A_3 \bigsqcup (a \ b) \cdot A_3$. So $S_3/A_3 = \{A_3, (a \ b) \cdot A_3\}$. And indeed, this agrees with Lagrange's theorem.
 - (b) $G = S_n, H = A_n$.

- 1. Main points. The same as in the case of n = 3 above.
- 2. Answer. Change 3 to general n in the answer above for S_3/A_3 .
- (c) $G = D_3$, $H = C_3$, Where D_3 is the dihedral group of order 3 and C_3 is its subgroup (cyclic of order 3) of rotations.
 - 1. Main points. Size.

2. Answer. We have
$$D_3/C_3 = \{C_3, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot C_3\}.$$

- (d) $G = \mathbb{R}, H = \mathbb{Z}.$
 - 1. Main points. Direct calculation.
 - 2. Answer. Any two points $x, y \in \mathbb{R}$, are in the same orbit iff $x y \in \mathbb{Z}$, so we have $\mathbb{R}/\mathbb{Z} = [0, 1) = \{x \in \mathbb{R} | 0 \le x < 1\}.$

(e)
$$G = O(2), H = SO(2).$$

- 1. Main points. Determinant calculation.
- 2. Answer. Take $A \in O(2)$, with $\det(A) = -1$, then $\det(A \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) = 1$, so $A \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in S0(2)$. This proves that $O(2) = SO(2) \bigsqcup \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot SO(2)$. Hence, $O(2)/SO(2) = \{SO(2), \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot SO(2)\}$.
- 3. Fermat's little theorem. Let p be a prime number. Denote by $\mathbb{Z}_p^* = \{1, ..., p-1\}$.
 - (a) Show that \mathbb{Z}_p^* is a groups with operation of multiplication modulo p.
 - 1. Main points. Decomposition into prime numbers. Euclid algorithm.
 - 2. Proof. We have
 - 1. Closure. Let $x, y \in \mathbb{Z}_p^*$. So p doesn't divides $x \cdot y$, which means that $x \cdot y$ is in \mathbb{Z}_p^* modulo p.
 - 2. Inverse. Let $x \in \mathbb{Z}_p^*$. Then the greatest common deviser of x and p is 1. By Euclid algorithm there exist integers $a, b \in \mathbb{Z}$ with ax + bp = 1. In particular, ax = 1 modulo p.
 - (b) Show that for every element $x \in \mathbb{Z}_p^*$ we have $x^{p-1} = 1$ modulo p. Hint: Use Lagrange'sTheorem with the groups $G = \mathbb{Z}_p^*$, and $H = \langle x \rangle$ the subgroup generated by x.
 - 1. Main points. Lagrange's theorem.
 - 2. *Proof.* By Lagrange's theorem $p-1 = k \cdot (\# < x >)$ for some integer d. From this we get

$$x^{p-1} = (x^{\# < x >})^k = 1^k = 1.$$
(1)

- (c) Conclude with Fermat's little Theorem: For $x \in \mathbb{Z}_p$, we have $x^p = x \mod(p)$.
 - 1. Main points. Equation (1).
 - 2. *Proof.* If x = 0 there is nothing to proof. If $x \in \mathbb{Z}_p^*$ this is what we got in equation (1).

Remarks • I will be happy to help you with any question related to these answers. Please visit me in my office hours.

Good Luck!