Math 541 Spring 2011 Homework#7, 5/04/11— Normal Subgroups, Lagrange's Theorem, Groups of Prime Order

Remark. Answers should be written in the following format:

- 0) Statement and/or Result.
- i) Main points that will appear in your explanation or proof or computation.
- ii) The actual explanation or proof or computation.
 - 1. Normal subgroups. Recall that a subgroup N of a group G is called <u>normal</u> if $g \cdot N \cdot g^{-1} = N$ for every $g \in G$. In this case we denote $N \triangleleft G$.
 - (a) Show that if $\varphi: G \to H$ is an homomorphism of groups, then $N = \ker(\varphi) \triangleleft G$.
 - (b) Show that the group R of rotations of the plane is a normal subgroup of the group O of orthogonal transformation of \mathbb{R}^2 .
 - (c) Show that the group A_n of even permutations of $\{1, 2, ..., n\}$ is a normal subgroup S_n .
 - (d) Find all normal subgroups of S_3 .
 - 2. Lagrange's Theorem. Recall that if H is a subgroup of a group G, then #H divides #G.
 - (a) What is the possible cardinality of subgroups of S_4 .
 - (b) Can you find for each of the possibilities in (a), a subgroup $H \subset G$ with that cardinality?
 - 3. Classification of all subgroups of prime order. Let G be a groups of order (cardinality) #G = p, where p is a prime number. Show that G is cyclic of order p. Use the following steps
 - (a) Choose a non-trivial element $1 \neq g \in G$, and consider the group $\langle g \rangle = \{g^k; k \in \mathbb{Z}\}$. Show that $\langle g \rangle = \{1, g, ..., g^{d-1}\}$ for some integer d > 0. This d is called the order of g, denoted by d = ord(g).
 - (b) Since by Lagrange's theorem we have # < g > |#G, and #G = p, deduce that < g >= G.
 - You are very much encouraged to work with other students. However, submit your work alone.
 - I will be happy to help you with the home works. Please visit me in my office hours.

Good Luck!