Math 541 Spring 2011 Solutions–Homework#7, Normal Subgroups, Lagrange's Theorem, Groups of Prime Order

Remark. Answers should be written in the following format:

- 0) Statement and/or Result.
- i) Main points that will appear in your explanation or proof or computation.
- ii) The actual explanation or proof or computation.
 - 1. Normal subgroups. Recall that a subgroup N of a group G is called <u>normal</u> if $g \cdot N \cdot g^{-1} = N$ for every $g \in G$. In this case we denote $N \triangleleft G$.
 - (a) Show that if $\varphi: G \to H$ is an homomorphism of groups, then $N = \ker(\varphi) \triangleleft G$.
 - 1. Main points. Direct calculation.
 - 2. Calculation. Take $x \in N$, and compute

$$\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g)^{-1} \stackrel{\varphi \text{ is hom}}{=} \varphi(g)\varphi(g)^{-1} = 1_H.$$

So we have proved that $g \cdot N \cdot g^{-1} \subset N$. If $x \in N$, then the same argument $y = g^{-1}xg \in N$ so $x = gyg^{-1}$ i.e., $N \subset gNg^{-1}$.

- (b) Show that the group R of rotations of the plane is a normal subgroup of the group O of orthogonal transformation of \mathbb{R}^2 .
 - 1. Main points. It is a kernel.
 - 2. *Proof.* The map det : $O(2) \rightarrow \{\pm 1\}$ is an homomorphism with ker(det) = SO(2) = R.
- (c) Show that the group A_n of even permutations of $\{1, 2, ..., n\}$ is a normal subgroup S_n .
 - 1. Main points. Kernel.
 - 2. Proof. We have the homomorphism $sgn: S_n \to \{\pm 1\}$, with kernel ker $(sgn) = A_n$.
- (d) Find all normal subgroups of S_3 .
 - 1. Main points. Direct calculation.
 - 2. Calculation. Lagrange's theorem implies that the subgroups of $S_3 = Aut(\{a, b, c\})$ are of orders 6, 3, 2, 1. A direct verification shows that they are S_3 , $A_3 = \{(a \ b \ c), (a \ c \ b), id\}, \{(a \ b), id\}, \{(a \ c), id\}, \{(b \ c), id\}, \{id\}$. A direct calculation shows that the normal subgroups are $\{id\}, A_3, S_3$.
- 2. Lagrange's Theorem. Recall that if H is a subgroup of a group G, then #H divides #G.

- (a) What is the possible cardinality of subgroups of S_4 .
 - 1. Main points. Lagrange's theorem.
 - 2. Computation. We have #S = 24. The possibilities are 24, 12, 8, 6, 4, 3, 2, 1.
- (b) Can you find for each of the possibilities in (a), a subgroup $H \subset G$ with that cardinality?
 - 1. Main points. Just direct verification.
 - 2. Answer. We have

$$\begin{array}{cccc} \#G & G < S_4 \\ 24 & S_4 \\ 12 & A_4 \\ 8 & D_4 \\ 6 & S_3 \\ 4 & C_4 \\ 2 & \{(a \ b), \ id\} \\ 1 & \{id\} \end{array}$$

- 3. Classification of all subgroups of prime order. Let G be a groups of order (cardinality) #G = p, where p is a prime number. Show that G is cyclic of order p. Use the following steps
 - (a) Choose a non-trivial element $1 \neq g \in G$, and consider the group $\langle g \rangle = \{g^k; k \in \mathbb{Z}\}$. Show that $\langle g \rangle = \{1, g, ..., g^{d-1}\}$ where d is minimal integer $\rangle 0$ such that $g^d = 1$. This d is called the order of g, denoted by d = ord(g).
 - 1. Main points (Proof of Tim). Euclid algorithm, and minimality of d.
 - 2. Proof. By minimality of d all the elements in this set are different. If $g^i = g^j$, for some $0 \le i < j \le d-1$, then $g^{j-i} = 1$, contradict the minimality. We need to show that $\langle g \rangle \subset \{1, g, ..., g^{d-1}\}$. Indeed, for $n \in \mathbb{Z}$, write n = qd+r, with r integer with $0 \le r < d$, so $g^n = (g^d)^q \cdot g^r = g^r$.
 - (b) Since by Lagrange's theorem we have 1 < # < g > |#G, and #G = p, we have that $\langle g \rangle = G$.
- **Remark** I will be happy to help with any question on these solutions. Please visit me in my office hours.

Good Luck!