Math 541 Fall 2010 Homework#7, November 30—Counting formula, class equation

<u>Remark</u>. Answers should be written in the following format:

i) Statement and/or Result.

- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. Let G be a group acting on a set X.
 - (a) Define the notion of an orbit \mathcal{O} for the action of G on X.
 - (b) Choose an element $x \in X$ and consider its orbit \mathcal{O}_x . Denote by $G_x = Stab_G(x) = \{g \in G; g \cdot x = x\}$ the stabilizer of x in G. The Counting formula tells us that

$$#G_x \cdot #\mathcal{O}_x = ??$$

- (c) Assume that G is a p-group, i.e., G is of order $\#G = p^k$, for some prime p and $k \ge 1$. Suppose that G acts on a set X of cardinality #X which is not devisible by p. Show that there exists an element $x \in X$ which is a fixed point for G, i.e., such that $g \cdot x = x$ for every $g \in G$ (Hint: $\#X = \sum \#\mathcal{O}$ where the sum is over all the orbits for the action of G on X. If there is no fixed point then you should show using the counting formula that p devides each of the $\#\mathcal{O}$, hence p|#X contradiction!!).
- 2. Let G be a group.
 - (a) Define the conjugation action of G on G. Define the notion of a conjugacy class C in G.
 - (b) What is the class equation of G?
 - (c) Compute the class equation for the groups S_3 and S_4 .

Remarks • You are very much encouraged to work with other students. However, submit your work alone.

- I will be happy to help you with the homeworks. Please visit me in my office hours.
- Start to think on your project.

Good Luck!