Math 541 Fall 2017 HW6 - Counting, Quotient Groups, Symmetries in Space Due Friday Dec. 1 2017

Remark. Answers should be written in the following format:

- 0) Statement and/or Result.
- i) Main points that will appear in your explanation or proof or computation.
- ii) The actual explanation or proof or computation.
 - 1. Counting. Recall that if $\varphi: G \to G'$ is a homomorphism then

$$#G = \# \ker(\varphi) \cdot \# \operatorname{Im}(\varphi). \tag{1}$$

Consider the finite field with prime p elements $\mathbb{F}_p = \{0, 1, ..., p-1\}$, with + and \cdot modulo p.

- (a) Denote by $GL_n(\mathbb{F}_p) = \{A = (a_{ij}), n \times n \text{ matrix with entries } a_{ij} \in \mathbb{F}_p, \text{ and } \det(A) \neq 0\}$. Show that with the operation of matrix multiplication, and identity element $I = I_n, GL_n(\mathbb{F}_p)$ is a group. It is called the general linear group of order n over \mathbb{F}_p .
- (b) Compute the number of elements in $GL_n(\mathbb{F}_p)$ for n = 2, 3.
- (c) Denote by $SL_n(\mathbb{F}_p) = \{A \in GL_n(\mathbb{F}_p); \det(A) = 1\}$. Show that with the operation of matrix multiplication, and identity element $I = I_n, SL_n(\mathbb{F}_p)$ is a group. It is called the special linear group of order n over \mathbb{F}_p .
- (d) Compute the number of elements in $SL_n(\mathbb{F}_p)$ for n = 2, 3. Hint: use identity (1) with the homorphism det : $GL_n(\mathbb{F}_p) \to \mathbb{F}_p^*$.
- 2. Quotient groups. Recall that if G is a group and $N \triangleleft G$ a normal subgroup then we have the <u>quotient</u> group $(G/N, \bullet, 1_{G/N})$ where G/N is the set of let cosets for N in G, the operation \bullet is given by $gN \bullet g'N = gg'N$, and the identity element $1_{G/N} \in G/N$ is given by left coset of $1_GN = N$. The group G/N is also called sometime "G modulo N".
 - (a) Show that the kernel Ker(pr) of the natural map $pr : G \to G/N, g \mapsto gN$, satisfies Ker(pr) = N.
 - (b) Compute the multiplication table for the following quotient groups:
 - 1. The quotient group $Q = S_4/A_4$ of the symmetric group S_4 modulo the alternating group A_4 of all even elements in S_4 .
 - 2. The quotient group $Q = S_n/A_n$ of the symmetric group S_n modulo the alternating group A_n of all even elements in S_n .
 - 3. The quotient group $Q = D_3/C_3$ of the dihedral group D_3 of orthogonal symmetries of the triangle modulo the group C_3 of rotational symmetries of the triangle.

- (c) Describe a group which is naturally isomorphic to:
 - 1. The quotient group $Q = \mathbb{Z}/4\mathbb{Z}$, where \mathbb{Z} denotes the integers and $4\mathbb{Z} = \{4k; k \in \mathbb{Z}\}.$
 - 2. The quotient group Q = V/L, where $V = \mathbb{R}^2$ which is a group with the addition in V, and L is the diagonal subgroup of V, i.e., $L = \{(x, x); x \in \mathbb{R}\}$.
 - 3. The quotient group $Q = GL_2(\mathbb{F}_2)/SL_2(\mathbb{F}_2)$.
 - 4. The quotient group $Q = GL_2(\mathbb{F}_3)/SL_2(\mathbb{F}_3)$.
- (d) Suppose G is a group and H < G a subgroup of index [G : H] = 2, i.e., #(G/H) = 2. Show that H is normal subgroup, and $G/H \simeq \{1, -1\}$.
- 3. Alternating group. Show that the alternating group A_n is the unique subgroup $H < S_n$ of index two. (Hint: the onto homomorphism $pr : S_n \to S_n/H \simeq \{1, -1\}$, and the homomorphism $sgn : S_n \to \{1, -1\}$ must coincide so their kernels are the same).
- 4. Universal property of the quotient group. Suppose N is a normal subgroup of a group G. Denote by $pr: G \to G/N$ the natural projection (see 2.a. above). Suppose $\varphi: G \to G'$ a homomorphism such that $N < Ker(\varphi)$. Prove the following theorem:

Theorem. (Universal property of the quotient group). There is a unique homomorphism $\overline{\varphi}: G/N \to G'$ such that (*) $\overline{\varphi} \circ pr = \varphi$.

Directions: For uniqueness, show that such a $\overline{\varphi}$ must satisfies (**) $\overline{\varphi}(gN) = \varphi(g)$. For existence, show that (**) define a well defined (independent of the representative, i.e., if gN = g'N then $\varphi(g) = \varphi(g')$) homorphism that satisfies (*).

- 5. Symmetries of Objects in Space. Consider in \mathbb{R}^3 : the Thetrahedron \mathcal{T} , the cube \mathcal{C} , and the Dodecahedron \mathcal{D} . Denote by SO_3 the group of rotations of \mathbb{R}^3 (was described in class).
 - (a) Describe a natural isomorphism r from the group Thetrahedral group $T = Stab_{SO_3}(\mathcal{T})$ (the rotational symmetries of \mathcal{T}) to A_4 (the alternating group of 4 letters). Prove that your map is indeed an isomorphism.
 - (b) Describe a natural isomorphism r from the group Octahedral group $O = Stab_{SO_3}(\mathcal{C})$ (the rotational symmetries of \mathcal{C}) to S_4 (the permutation group of 4 letters). Prove that your map is indeed an isomorphism.
 - (c) Describe a natural isomorphism r from the Dodecahedral group $D = Stab_{SO_3}(\mathcal{D})$ (the rotational symmetries of \mathcal{D}) to A_5 (the alternating group of 5 letters). Prove that your map is indeed an isomorphism.
- **Remarks** You are very much encouraged to work with other students. However, submit your work alone.
 - We will be happy to help you with the home works. Please visit me in my office hours.

Good Luck!