Math 541 Fall 2010 Homework#6, November 10—Homomorphisms, Kernels, Lagrange's Theorem, Orbits

<u>Remark</u>. Answers should be written in the following format:

- i) Statement and/or Result.
- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. Let $\varphi: G \to H$ be homomorphism of finite groups.
 - (a) Show that $[G : \ker(\varphi)] \cdot \#(\ker(\varphi)) = \#G$ (Hint: This follows directly from Lagrange's theorem).
 - (b) Show that $[G : \ker(\varphi)] = \# \operatorname{Im}(\varphi)$ (Hint: we have an isomorphism $\overline{\varphi} : G/\ker(\varphi) \to \operatorname{Im}(\varphi)$).
 - (c) Show that $\#G = \#(\ker(\varphi)) \cdot \#\operatorname{Im}(\varphi)$.
 - 2. Suppose G is a finite group acting on a finite set X. For an element $x \in X$ we denote by $G_x = Stab_G(x) = \{g \in G; g \cdot x = x\}$ the stabilizer subgroup of x.
 - (a) Show that G_x is a subgroup of G.
 - (b) Let $O \subset X$ be an orbit for the action of G on X. In particular there exist $x \in O$ such that $O = G \cdot x = \{g \cdot x; g \in G\}$. Show that $\#O = \#(G_x \setminus G)$.
 - (c) Show that the number of elements in any orbit O, for the action of G on X, divides the number of elements in G.
 - 3. Let $P \subset \mathbb{R}^3$ be a regular tetrahedron (symmetric pyramid around the origin). Consider the tetrahedral group $T = Stab_{SO(3)}(P)$, where $SO(3) = \{A \in GL_3(\mathbb{R}); \langle Au, Av \rangle = \langle u, v \rangle$ for every $u, v \in \mathbb{R}^3$, and $\det(A) = 1\}$. Follow the following steps to show that T is naturally isomorphic to the group A_4 of even permutations of four letters.
 - (a) Define the natural map $r: T \to Aut(\{a, b, c, d\})$ and show it is one to one by investigating its kernel.
 - (b) Show that the image of r doesn't contains the transpositions. And deduce that $\operatorname{Im}(r) \subset A_4$ (Hint: investigate S_4/A_4 and show that it has order two).
 - (c) Show that $\#T \ge 12$ and deduce, using by 3.a and 3.b, that #T = 12. In particular, r is onto and hence isomorphism.
- **Remarks** You are very much encouraged to work with other students. However, submit your work alone.
 - I will be happy to help you with the homeworks. Please visit me in my office hours.
 - Start to think on your project.

Good Luck!