
Math 541 Spring 2011
Solutions: HW#5, – Orthogonal symmetries of the n-regular

polygon, Subgroups of Z, Product, Cyclic groups

Remark. Answers should be written in the following format:
i) Statement and/or Result.
ii) Main points that will appear in your explanation or proof or computation.
iii) The actual explanation or proof or computation.

1. Orthogonal symmetries of the n-regular polygon. Consider the set Pn⊂ R2 with
vertices at {(cos(θ), sin(θ)); where θ = k · 360/n, k = 0, 1, ..., n − 1}. Denote by
Dn = StabO(2,R)(S), the group of orthogonal symmetries of Pn. The group Dn is also
called the Dihedral group of order n.

(a) Show that #Dn = 2n, and write explicitly the elements of Dn in term of rotations
and reflections with respect to lines.

1. Main points. A linear operator on R2 is defined uniquely by its application
on two linearly independent vectors.

2. Solution. Let A ∈ Dn. Since A ∈ O it preserves angles up to a sign. So the
the side with vertices at (1, 0), (cos(360/n), sin) must go to one of the others
n sides with a possible flip (if the angle is changed from 360/n to −360/n) so
we are done 2n options. Moreover, we have

Dn = {r0, r360/n, r2·360/n, ..., r(n−1)·360/n, sl0 , sl 1
2 ·360/n

,...., sl
(n−1)· 12 ·360/n

},

where the r′θs, are the appropriate rotations, and the sl k
2 ·360/n

, k = 0, ..., n− 1
are the reflections with respect to the lines of slopes k

2
·360/n, k = 0, ..., n−1.

So we can conclude that #Dn = 2n.

(b) Write also matrices that describe these elements of Dn.

1. Main points. We know the answer for all the rotations. All the reflections can
be obtained using composition of one specific reflection and an appropriate
rotation.

2. Answer. A direct calculation shows that (remember that a linear transfor-
mation on R2 is completely determined by its action on two basis vectors):

sl0 =

(
1 0
0 −1

)
, sl 1

2 ·360/n
= r360/n ◦ sl0 , ..., sl 1

2 ·(n−1)·360/n
= r(n−1)·360/n ◦ sl0 .

2. Subgroups of Z. Consider the group (Z, 0,+) of integers.

(a) Show that for every d ∈ N = {0, 1, 2, ....} the set dZ = {d · n ; n ∈ Z} is a
subgroup of Z.
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1. Main points. Direct calculation.
2. Proof. Do it!

(b) Show the converse, if H < Z is a subgroup, then there exists an integer d ≥ 0
such that H = dZ. Hint: Use the Euclid theorem (ET)

If m,n ∈ N, then there exist q, r ∈ N such that n = qm+ r, with 0 ≤ r < m.

1. Main points. ET above.
2. Proof. Let H < Z. If H = {0} we are done. So we can assume that H
contains positive integers. Let d be the smallest positive integer in H. We
need to show that any other integer n in H is a multiple of d.We can assume
that n > 0. By ET we have q, r ≥ 0 so that

n = q · d+ r, 0 ≤ r < d.

In particular, d > r = n− q · d ∈ H, so by the minimality assumption on d,
we have r = 0.

3. Product of groups. Suppose G and H are groups. Consider the Cartesian product
G×H with its natural multiplication

(g, h) · (g′, h′) = (g · g′, h · h′),

and identity element (1G, 1H).

(a) Consider the sets Z2 = {0, 1}, Z3 = {0, 1, 2}, Z6 = {0, 1, 2, 3, 4, 5} which are
groups with addition + modulo 2, 3, and 6 respectively. Show that the map

ϕ : Z6 → Z2 × Z3,
x 7→ (x mod 2, x mod 3),

is an isomorphism.

1. Main points. Computation of the kernel.
2. Proof. Suppose x ∈ ker(ϕ). Then we can think on x as an integer, and since
x is divisible by 2 and 3 it must be that also 6 divides x.

4. Cyclic groups. A group (C, ·, 1) is called cyclic if there exist an element x ∈ C such
that C = {xk; k ∈ Z}, where

xk =


x · x · ... · x︸ ︷︷ ︸

k times

, if k > 0,

1 if k = 0,
x−1 · x−1 · ... · x−1︸ ︷︷ ︸

−k times

, if k < 0.

(a) Show that the group Z is cyclic.

1. Here the operation · is the addition +, and Z is generated by 1.

2



(b) Show that for every integer n ≥ 1 the group Zn = {0, 1, ..., n− 1} with operation
of addition + modulo n, is cyclic group of order n.

1. It is generated by 1.

(c) Show that the group Z2 × Z2 is not cyclic.
1. Every element is of order 2 : (x, y) + (x, y) = (0, 0). No element is of order 4.

(d) Let C be a cyclic group. Show that if C is of finite order n, i.e., #C = n for some
positive integer n, then C is isomorphic to Zn. Show that if the cardinality of C
is infinite, then C is isomorphic to Z. Hint: Analyze the maps Zn → C given by
k 7→ xk, and Z→ C given by x 7→ xk, where x is a generator of C.

1. Main points. The above hint.
2. Proof. Suppose #C = ∞. Let us compute the kernel of the (onto!) homo-
morphism

ϕ : Z→ C,

ϕ(k) = xk.

We have ker(ϕ) = {0}. Indeed, if we had for k > 0, xk = 1, then xk+1 = x,
and we deduce the #C ≤ k < ∞. Next, suppose that #C = n, then C =
{1 = x0, x, ..., xn−1}. Now the map,

ϕ : Zn → C,

ϕ(k) = xk,

is an isomorphism.

Remarks • I will be happy to help you understanding these answers. Please visit me in
my offi ce hours.

Good Luck!

3


