Math 541 Spring 2011 Solutions: HW#5, — Orthogonal symmetries of the *n*-regular polygon, Subgroups of *z*, Product, Cyclic groups

Remark. Answers should be written in the following format:

- i) Statement and/or Result.
- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. Orthogonal symmetries of the *n*-regular polygon. Consider the set $\mathcal{P}_n \subset \mathbb{R}^2$ with vertices at $\{(\cos(\theta), \sin(\theta)); \text{ where } \theta = k \cdot 360/n, k = 0, 1, ..., n 1\}$. Denote by $D_n = Stab_{O(2,\mathbb{R})}(\mathcal{S})$, the group of orthogonal symmetries of \mathcal{P}_n . The group D_n is also called the Dihedral group of order n.
 - (a) Show that $\#D_n = 2n$, and write explicitly the elements of D_n in term of rotations and reflections with respect to lines.
 - 1. Main points. A linear operator on \mathbb{R}^2 is defined uniquely by its application on two linearly independent vectors.
 - 2. Solution. Let $A \in D_n$. Since $A \in O$ it preserves angles up to a sign. So the the side with vertices at (1,0), $(\cos(360/n),\sin)$ must go to one of the others n sides with a possible flip (if the angle is changed from 360/n to -360/n) so we are done 2n options. Moreover, we have

$$D_n = \{r_0, r_{360/n}, r_{2\cdot360/n}, \dots, r_{(n-1)\cdot360/n}, s_{l_0}, s_{l_{\frac{1}{2}\cdot360/n}}, \dots, s_{l_{(n-1)\cdot\frac{1}{2}\cdot360/n}}\},\$$

where the $r'_{\theta}s$, are the appropriate rotations, and the $s_{l_{\frac{k}{2}\cdot 360/n}}$, k = 0, ..., n-1are the reflections with respect to the lines of slopes $\frac{k}{2}\cdot 360/n$, k = 0, ..., n-1. So we can conclude that $\#D_n = 2n$.

- (b) Write also matrices that describe these elements of D_n .
 - 1. Main points. We know the answer for all the rotations. All the reflections can be obtained using composition of one specific reflection and an appropriate rotation.
 - 2. Answer. A direct calculation shows that (remember that a linear transformation on \mathbb{R}^2 is completely determined by its action on two basis vectors):

$$s_{l_0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad s_{l_{\frac{1}{2} \cdot 360/n}} = r_{360/n} \circ s_{l_0}, \dots, \quad s_{l_{\frac{1}{2} \cdot (n-1) \cdot 360/n}} = r_{(n-1) \cdot 360/n} \circ s_{l_0} \cdot s_{l_0$$

- 2. Subgroups of \mathbb{Z} . Consider the group $(\mathbb{Z}, 0, +)$ of integers.
 - (a) Show that for every $d \in \mathbb{N} = \{0, 1, 2, ...\}$ the set $d\mathbb{Z} = \{d \cdot n ; n \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z} .

- 1. Main points. Direct calculation.
- 2. Proof. Do it!
- (b) Show the converse, if $H < \mathbb{Z}$ is a subgroup, then there exists an integer $d \ge 0$ such that $H = d\mathbb{Z}$. Hint: Use the Euclid theorem (ET)

If $m, n \in \mathbb{N}$, then there exist $q, r \in \mathbb{N}$ such that n = qm + r, with $0 \le r < m$.

- 1. Main points. ET above.
- 2. Proof. Let $H < \mathbb{Z}$. If $H = \{0\}$ we are done. So we can assume that H contains positive integers. Let d be the smallest positive integer in H. We need to show that any other integer n in H is a multiple of d. We can assume that n > 0. By ET we have $q, r \ge 0$ so that

$$n = q \cdot d + r, \quad 0 \le r < d.$$

In particular, $d > r = n - q \cdot d \in H$, so by the minimality assumption on d, we have r = 0.

3. Product of groups. Suppose G and H are groups. Consider the Cartesian product $G \times H$ with its natural multiplication

$$(g,h) \cdot (g',h') = (g \cdot g',h \cdot h'),$$

and identity element $(1_G, 1_H)$.

(a) Consider the sets $\mathbb{Z}_2 = \{0,1\}, \mathbb{Z}_3 = \{0,1,2\}, \mathbb{Z}_6 = \{0,1,2,3,4,5\}$ which are groups with addition + modulo 2, 3, and 6 respectively. Show that the map

$$\begin{aligned} \varphi &: \quad \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3, \\ x &\mapsto (x \mod 2, x \mod 3), \end{aligned}$$

is an isomorphism.

- 1. Main points. Computation of the kernel.
- 2. *Proof.* Suppose $x \in \ker(\varphi)$. Then we can think on x as an integer, and since x is divisible by 2 and 3 it must be that also 6 divides x.
- 4. Cyclic groups. A group $(C, \cdot, 1)$ is called <u>cyclic</u> if there exist an element $x \in C$ such that $C = \{x^k; k \in \mathbb{Z}\}$, where

$$x^{k} = \begin{cases} \underbrace{x \cdot x \cdot \dots \cdot x}_{k \text{ times}}, & \text{if } k > 0, \\ 1 & \text{if } k = 0, \\ \underbrace{x^{-1} \cdot x^{-1} \cdot \dots \cdot x^{-1}}_{-k \text{ times}}, & \text{if } k < 0. \end{cases}$$

- (a) Show that the group \mathbb{Z} is cyclic.
 - 1. Here the operation \cdot is the addition +, and \mathbb{Z} is generated by 1.

(b) Show that for every integer $n \ge 1$ the group $\mathbb{Z}_n = \{0, 1, ..., n-1\}$ with operation of addition + modulo n, is cyclic group of order n.

1. It is generated by 1.

(c) Show that the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic.

1. Every element is of order 2: (x, y) + (x, y) = (0, 0). No element is of order 4.

- (d) Let C be a cyclic group. Show that if C is of finite order n, i.e., #C = n for some positive integer n, then C is isomorphic to \mathbb{Z}_n . Show that if the cardinality of C is infinite, then C is isomorphic to Z. Hint: Analyze the maps $\mathbb{Z}_n \to C$ given by $k \mapsto x^k$, and $\mathbb{Z} \to C$ given by $x \mapsto x^k$, where x is a generator of C.
 - 1. Main points. The above hint.
 - 2. *Proof.* Suppose $\#C = \infty$. Let us compute the kernel of the (onto!) homomorphism

$$\begin{array}{rcl} \varphi & : & \mathbb{Z} \to C, \\ \varphi(k) & = & x^k. \end{array}$$

We have $\ker(\varphi) = \{0\}$. Indeed, if we had for k > 0, $x^k = 1$, then $x^{k+1} = x$, and we deduce the $\#C \leq k < \infty$. Next, suppose that #C = n, then $C = \{1 = x^0, x, ..., x^{n-1}\}$. Now the map,

$$\begin{array}{rcl} \varphi & : & \mathbb{Z}_n \to C, \\ \varphi(k) & = & x^k, \end{array}$$

is an isomorphism.

Remarks • I will be happy to help you understanding these answers. Please visit me in my office hours.

Good Luck!