Math 541 Spring 2011 Homework#5, 27/03/11— Orthogonal symmetries of the *n*-regular polygon, Subgroups of \mathbb{Z} , Product, Cyclic groups

Remark. Answers should be written in the following format:

- i) Statement and/or Result.
- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. Orthogonal symmetries of the n-regular polygon. Consider the set $\mathcal{P}_n \subset \mathbb{R}^2$ with vertices at $\{(\cos(\theta), \sin(\theta)); \text{ where } \theta = k \cdot 360/n, k = 0, 1, ..., n 1\}$. Denote by $D_n = Stab_{O(2,\mathbb{R})}(\mathcal{S})$, the group of orthogonal symmetries of \mathcal{P}_n . The group D_n is also called the Dihedral group of order n.
 - (a) Show that $\#D_n = 2n$, and write explicitly the elements of D_n in term of rotations and reflections with respect to lines.
 - 1. Main points. A linear operator on \mathbb{R}^2 is defined unquely by its application on two linearly independent vectors.
 - (b) Write also matrices that describe these elements of D_n .
 - 2. Subgroups of \mathbb{Z} . Consider the group $(\mathbb{Z}, 0, +)$ of integers.
 - (a) Show that for every $d \in \mathbb{N} = \{0, 1, 2, ...\}$ the set $d\mathbb{Z} = \{d \cdot n ; n \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z} .
 - (b) Show the converse, if $H < \mathbb{Z}$ is a subgroup, then there exists an integer $d \ge 0$ such that $H = d\mathbb{Z}$. Hint: Use the Euclid theorem

If $m, n \in \mathbb{N}$, then there exist $q, r \in \mathbb{N}$ such that n = qm + r, with $0 \le r < m$.

3. Product of groups. Suppose G and H are groups. Consider the Cartesian product $G \times H$ with its natural multiplication

$$(g,h) \cdot (g',h') = (g \cdot g',h \cdot h'),$$

and identity element $(1_G, 1_H)$.

(a) Consider the sets $\mathbb{Z}_2 = \{0,1\}, \mathbb{Z}_3 = \{0,1,2\}, \mathbb{Z}_6 = \{0,1,2,3,4,5\}$ which are groups with addition + modulo 2, 3, and 6 respectively. Show that the map

$$\begin{aligned} \varphi &: \quad \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3, \\ x &\mapsto (x \mod 2, x \mod 3), \end{aligned}$$

is an isomorphism.

4. Cyclic groups. A group $(C, \cdot, 1)$ is called <u>cyclic</u> if there exist an element $x \in C$ s.t $C = \{x^k; k \in \mathbb{Z}\}$ where

$$x^{k} = \begin{cases} \underbrace{x \cdot x \cdot \dots \cdot x}_{k \text{ times}}, & \text{if } k > 0, \\ 1 & \text{if } k = 0, \\ \underbrace{x^{-1} \cdot x^{-1} \cdot \dots \cdot x^{-1}}_{-k \text{ times}}, & \text{if } k < 0 \end{cases}$$

- (a) Show that the group \mathbb{Z} is cyclic.
- (b) Show that for every integer $n \ge 1$ the group $\mathbb{Z}_n = \{0, 1, ..., n-1\}$ with operation of addition + modulo n, is cyclic group of order n.
- (c) Show that the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic.
- (d) Let C be a cyclic group. Show that if C is of finite order n, i.e., #C = n for some positive integer n, then C is isomorphic to \mathbb{Z}_n . Show that if the cardinality of C is infinite, then C is isomorphic to \mathbb{Z} . Hint: Analyze the maps $\mathbb{Z}_n \to C$ given by $k \mapsto x^k$, and $\mathbb{Z} \to C$ given by $x \mapsto x^k$, where x is a generator of C.
- **Remarks** You are very much encouraged to work with other students. However, submit your work alone.
 - I will be happy to help you with the home works. Please visit me in my office hours.

Good Luck!