Math 541 Fall 2010 Homework#5, November 2—Homomorphisms, Kernels and Normal subgroups

<u>Remark</u>. Answers should be written in the following format:

- i) Statement and/or Result.
- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. Denote by $S_n = Aut(\{1, ..., n\}).$
 - (a) Define the natural action of S_n on the vector space of polynomials over \mathbb{Q} in n variables $\mathcal{P} = \mathbb{Q}[x_1, ..., x_n]$.
 - (b) Consider the discriminant polynomial $D(x_1, ..., x_n) = \prod_{1 \le i < j \le n} (x_j x_i)$. Verify the equality $D^{\sigma} = sgn(\sigma) \cdot D$, where $D^{\sigma} = \sigma \cdot D$, as you defined in (a), and $sgn(\sigma) \in \{\pm 1\}$.
 - (c) Show that the map $sgn: S_n \to \{\pm 1\}$ defined above is an homorphism.
 - 2. Let H be a subgroup of G. Show that if index [G : H] = 2 then H is normal in G. Recall that the index is the number of left (or right) cosets of H in G.
- **Remarks** You are very much encouraged to work with other students. However, submit your work alone.
 - I will be happy to help you with the homeworks. Please visit me in my office hours.
 - Start to think on your project.

Good Luck!