Math 541 Spring 2011 Homework#4, 18/02/11— Orthogonal Group, Orthogonal Symmetries of the Triangle and the Square

Remark. Answers should be written in the following format:

- i) Statement and/or Result.
- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. The orthogonal group. Denote by \langle , \rangle the standard inner product on \mathbb{R}^2 . Consider the set $O(2,\mathbb{R}) = \{A \in Mat(2,\mathbb{R}); \text{ such that } \langle Au, Av \rangle = \langle u, v \rangle \text{ for every } u, v \in \mathbb{R}^2\}$, i.e., the set of all 2×2 real matrices that preserve the inner product.
 - (a) Show that for any $A, B \in O(2, \mathbb{R})$, their matrix product $A \circ B \in O(2, \mathbb{R})$.
 - (b) Show that the triple $(O(2,\mathbb{R}), \circ, I)$ is a group (subgroup of $GL_2(\mathbb{R})$), where \circ denotes the standard multiplication of matrices, and I is the identity matrix. This group is called the real orthogonal group of order two.
 - (c) (*) Show that

$$O(2,\mathbb{R}) = \{ A \in Mat(2,\mathbb{R}); \text{ such that } A \circ A^t = I \}.$$

- (d) Show that if $A \in O(2, \mathbb{R})$ then $det(A) = \pm 1$. Here, det(A) is the determinant of A.
- (e) Show that the group R of rotations of the \mathbb{R}^2 is equal to the following subgroup of $O(2, \mathbb{R})$

$$R = \{A \in O(2, \mathbb{R}); \det(A) = 1\}.$$

In the literature people sometime denote the group R by $SO(2, \mathbb{R})$ and call it the special orthogonal group of order two.

- 2. Orthogonal symmetries of the triangle. Consider the triangle $\mathcal{T} \subset \mathbb{R}^2$ with vertices at $\{(\cos(\theta), \sin(\theta)); \text{ where } \theta = 0^\circ, 120^\circ, \text{ or } 240^\circ\}.$
 - (a) Define precisely the orthogonal linear transformations $r_{0, r_{120}, r_{240}}$ of rotational symmetries, and the reflectional symmetries $s_{l_{60}}, s_{l_{180}}, s_{l_{300}}$, that preserve \mathcal{T} .
 - (b) Denote by $D_3 = Stab_{O(2,\mathbb{R})}(\mathcal{T})$ the stabilizer of \mathcal{T} in $O(2,\mathbb{R})$. Explain why $\{r_{0,r_{120}}, r_{240}, s_{l_{60}}, s_{l_{180}}, s_{l_{300}}\} \subset D_3$.
 - (c) Show that $\#D_3 = 6$ and deduce that $D_3 = \{r_{0}, r_{120}, r_{240}, s_{l_{60}}, s_{l_{180}}, s_{l_{300}}\}$. In particular, this explains that $\{r_{0}, r_{120}, r_{240}, s_{l_{60}}, s_{l_{180}}, s_{l_{300}}\}$ is a subgroup of $O(2, \mathbb{R})$.
 - (d) Compute explicitly the multiplication table of D_3 .
- 3. Orthogonal symmetries of the square. Consider the square $\mathcal{S} \subset \mathbb{R}^2$ with vertices at $\{(\cos(\theta), \sin(\theta)); \text{ where } \theta = 0^\circ, 90^\circ, 180^\circ, \text{ or } 270^\circ\}$. Denote by $D_4 = Stab_{O(2,\mathbb{R})}(\mathcal{S})$, the group of orthogonal symmetries of \mathcal{S} .

- (a) Show that $\#D_4 = 8$ and write explicitly the elements of D_4 in term of rotations and reflections.
- (b) Write also matrices that describe these elements of D_4 .
- **Remarks** You are very much encouraged to work with other students. However, submit your work alone.
 - I will be happy to help you with the home works. Please visit me in my office hours.

Good Luck!