Math 541 Fall 2010 Homework#4, October 26—Equivalence relations and group action

<u>Remark</u>. Answers should be written in the following format:

i) Statement and/or Result.

- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. A <u>relation</u> on a set X is a subset $\sim \subset X \times X$. If $x, y \in X$ are in relation, i.e., $(x, y) \in \sim$ then we usually write $x \sim y$. A relation \sim on X is called <u>equivalence</u> if it satisfies the following three axioms: i) Reflexivity: if $x \sim x$ for every $x \in X$. ii) Symmetry: If $x \sim y$ then $y \sim x$. iii) Transitivity: If $x \sim y$ and $y \sim z$ then $x \sim z$. An <u>equivalence class</u> for an equivalence relation \sim on X is a maximal subset of X such that all element in it are equivalent. We denote the set of all equivalence classes by X/ \sim (it reads: X modulo \sim).
 - (a) Show that if \sim is an equivalence relation on X then we have a decomposition $X = \bigcup_{E \in X/\sim} E$ into disjoint union over all equivalence classes.
 - (b) Suppose we have an action of a group H on a set X. Define the <u>orbit relation</u> on X with $x \sim y$ if x and y are mapped to each other by the action of H. Show that \sim is an equivalence relation. The set X/\sim is denoted in this case by $H\backslash X$ and is called the set of orbits.
 - (c) In the following examples describe the orbit set $H \setminus X$:
 - 1. The natural action of the group H = SO(2) of rotations on $X = \mathbb{R}^2$.
 - 2. The natural action of the group H = SO(3) on $X = \mathbb{R}^3$.
 - 3. The natural action of the group $H = \mathbb{R}^*$ on $X = \mathbb{R}^2 \{0\}$. In this case $H \setminus X$ is denoted by \mathbb{P}^1 and is called the projective line.
 - 2. Let *H* be a subgroup of a finite group *G*. Then *H* act on *G* from the right by by $h \triangleright g = gh^{-1}$. Let us denote the set of equivalence classes for the induced equivalence relation by G/H and by [G : H] the number of elements in G/H. In this case the elements of G/H are called left cosets of *H* in *G*.
 - (a) Show that any equivalence class in G/H has the same number of elements as in H.
 - (b) Deduce the equality of cardinalities $\#G = [G : H] \cdot \#H$. This identity is called Lagrange theorem.
 - (c) Let G be a group of order n. Show that for any element $g \in G$ we have $g^n = 1$.
 - 3. Let $C_3 \subset S_3 = Aut(\{a, b, c\})$ be the cyclic group generated by the element $(a \ b \ c)$.
 - (a) Show that C_3 is a normal subgroup of S_3 .

- (b) Describe explicitly the left cosets in S_3/C_3 . Do you see a natural group structure on S_3/C_3 such that the natural projection $S_3 \to S_3/C_3$ is an homomorphism.
- (c) Find a group P and an homomorphism $\varphi: S_3 \to P$ with kernel C_3 .
- **Remarks** You are very much encouraged to work with other students. However, submit your work alone.
 - I will be happy to help you with the homeworks. Please visit me in my office hours.
 - Start to think on your project.

Good Luck!