Math 541 Spring 2011 Homework#2, 01/02/11— Rotational symmetries

Remark. Answers should be written in the following format:

i) Statement and/or Result.

ii) Main points that will appear in your explanation or proof or computation.

- iii) The actual explanation or proof or computation.
 - 1. Rotational symmetries.
 - (a) Consider the collection R of all matrices of the form

$$r_{ heta} = egin{pmatrix} \cos(heta) & -\sin(heta) \ \sin(heta) & \cos(heta) \end{pmatrix}, \quad heta \in \mathbb{R}.$$

Show that the triple $(R, \circ, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix})$ with \circ denotes multiplications of matrices, is a group. This group is called the *group of rotations* of the plane \mathbb{R}^2 . In the literature it is also denoted sometime by $SO(2, \mathbb{R})$.

- (b) Write down the definition of a group $(G, \cdot, 1)$ acting on a set X.
- (c) Consider the natural map $R \times \mathbb{R}^2 \to \mathbb{R}^2$, which sends a pair (r_{θ}, v) to the vector $r_{\theta}(v)$, i.e., the rotation of v by angle θ . Show that this map satisfies the axioms for the action of a group on a set.
- 2. Rotational symmetries of a square.
 - (a) Write down a diagram of the standard square $\Box \subset \mathbb{R}^2$ with vertices $(\pm 1, \pm 1)$.
 - (b) Compute the set $C_4 = \{r_\theta \in R; r_\theta(\Box) = \Box\}$ of all rotational symmetries of the square.
 - (c) Show that the triple (C_4, \circ, I) , where \circ denotes the operation of composition of rotations, and I is the identity rotation, is a group. We will call it the group of rotational symmetries of the square.
- 3. Let $(G, \cdot, 1)$ be a group acting on a set X. For a subset $Y \subset X$ we define the set of *G-symmetries of* Y to be the subset $Stab_G(Y) \subset G$ given by

$$Stab_G(Y) = \{g \in G; g(Y) = Y\},\$$

where $g(Y) = \{g \cdot y; y \in Y\}$. The set $Stab_G(Y)$ is also called the *stabilizer* of Y in G.

- (a) Show that $Stab_G(Y)$ is a subgroup of G.
- (b) Consider the standard 5-sided polygon Y in the plane \mathbb{R}^2 , with vertices in the points $z^5 = 1$, where we think on points of \mathbb{R}^2 as complex numbers $z \in \mathbb{C}$. Write down its diagram.

- (c) Compute the group $C_5 = Stab_R(Y) = \{r_\theta \in R; r_\theta(Y) = Y\}$ of rotational symmetries of Y.
- **Remarks** You are very much encouraged to work with other students. However, submit your work alone.
 - I will be happy to help you with the home works. Please visit me in my office hours.

Good Luck!