Math 541 Spring 2011 Homework#1—Answers, 8/2/11

Definition. A group is a triple $(G, \cdot, 1_G)$, where G is a set, $\cdot : G \times G \to G$, $(g, h) \mapsto g \cdot h$, is a map, called *operation*, and $1_G \in G$ a specific element, called *identity*, such that the following axioms are satisfied:

- Associativity. We have $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$ for every $g_1, g_2, g_3 \in G$.
- Identity. The element 1_G satisfies $1_G \cdot g = g \cdot 1_G = g$ for every $g \in G$.
- Inverse. For every $g \in G$ there exists $g' \in G$ such that $g \cdot g' = g' \cdot g = 1_G$. We will denote such a g' (it turns out that it is unique see 2.*b*. below) usually by g^{-1} .
- 1. Check which of the following is a group
 - (a) The set \mathbb{R} with the standard operation of addition + and identity element 0.
 - 1. Answer. It is a group.
 - 2. Main points: Usual properties of addition of real numbers.
 - 3. Checking :
 - 1. Operation. Indeed the addition + is an operation on the reals, i.e., for every $x, y \in \mathbb{R}$, also $x + y \in \mathbb{R}$.
 - 2. Associativity. Holds for addition of real numbers.
 - 3. Identity. Indeed, if $\in \mathbb{R}$, then x + 0 = 0 + x = x.
 - 4. Inverse. Indeed, if $x \in \mathbb{R}$, then x' = -x satisfies x + x' = x' + x = 0.
 - (b) The set $\mathbb{N} = \{0, 1, 2, ...\}$ of natural numbers, with the standard operation of addition and the element 0 as identity.
 - 1. Answer. It is not a group.
 - 2. Main points. Inverse.
 - 3. Checking. The inverse axioms is not satisfied. There is no $x \in \mathbb{N}$ so that 1 + x = 0.
 - (c) The set $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ of integers, with the standard operation of addition and the element 0 as identity.
 - 1. It is a group.
 - 2. Main points. Standard properties of integers.
 - 3. Checking. Nothing really to check.
 - (d) The triple $(\mathbb{R}^{\times}, \cdot, 1)$ where $\mathbb{R}^{\times} = \mathbb{R} 0$ the set of all non-zero real numbers, \cdot is the usual multiplication of real numbers, and 1 is the usual number 1.
 - 1. Answer. It is a group.
 - 2. Main points. Closure, and inverses.
 - 3. Checking:

- 1. Operation. Indeed, if x, y are non-zero real numbers then also $x \cdot y \in \mathbb{R} 0$.
- 2. Associativity. Standard property of \cdot of real numbers.
- 3. Identity. $1 \cdot x = x$ for every $x \in \mathbb{R}$.
- 4. Inverse. If x is a non zero real number then we know that there exists x' nonzero real such that $x \cdot x' = x' \cdot x = 1$.
- (e) Denote by $GL_2(\mathbb{R})$ the set of all 2×2 invertible matrices with real entries

$$GL_2(\mathbb{R}) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{R} \text{ and there exists } A^{-1} \right\}.$$

Show that with the operation \circ of matrix multiplication the triple $(GL_2(\mathbb{R}), \circ, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix})$ is a group.

- 1. Answer. It is a group.
- 2. Main points. Closure.
- 3. Checking.
 - 1. Operation. Indeed, if $A, B \in GL_2(\mathbb{R})$ then also $A \circ B$. In fact we can even compute the inverse and we have $(A \circ B)^{-1} = B^{-1} \circ A^{-1}$.
 - 2. Associativity. We have for matrix multiplication in general.
 - 3. Identity. I satisfies what is required.
 - 4. Inverse. In this case it is by definition of $GL_2(\mathbb{R})$.
- (f) The triple $(M_2(\mathbb{R}), +, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix})$ where $M_2(\mathbb{R})$ denotes the set of all 2×2 matrices with real entries, and + denotes standard addition of matrices.
 - 1. Answer. It is a group.
 - 2. Main points. Regular checking of axioms.
 - 3. Checking. Standard.
- 2. Properties of groups. Let $(G, \cdot, 1)$ be a group. Show that:
 - (a) If e and e' are elements of G which satisfy $e \cdot g = g \cdot e = g$ and $e' \cdot g = g \cdot e' = g$ then e = e'.
 - 1. Main points. Definition of identity.
 - 2. Proof. We have $e = e \cdot e' = e'$, where the first equality follows from the fact that e' is an identity and the second from the fact that e' is an identity.
 - (b) If g,g',g'' are elements of G, and $g \cdot g' = g' \cdot g = 1$ and $g'' \cdot g = g \cdot g'' = 1$ then g' = g''.
 - 1. Main points. Definition of an inverse.
 - 2. Proof. $g' = g' \cdot 1 = g' \cdot (g \cdot g'') = (g' \cdot g) \cdot g'' = 1 \cdot g'' = g''.$
 - (c) If $g, g' \in G$ and $g \cdot g' = 1$ then $g' \cdot g = 1$.
 - 1. Main points. Inverse.

- 2. Proof. Multiply both sides of $g \cdot g' = 1$ by an inverse g'' of g we see that g' = g'' so we conclude again that the inverse is unique and that $g' \cdot g = g''g = 1$.
- (d) For every $g \in G$ we have $(g^{-1})^{-1} = g$.
 - 1. Main points. Definition of inverse.
 - 2. Proof. Indeed, g is the inverse of g^{-1} .
- (e) For every $g, h \in G$ we have $(g \cdot h)^{-1} = h^{-1} \cdot g^{-1}$.
 - 1. Main points. Definition of inverse.
 - 2. Proof. Compute $(h^{-1} \cdot g^{-1}) \cdot (g \cdot h) = h^{-1} \cdot (g \cdot g^{-1}) \cdot h = h^{-1} \cdot h = 1$.
- 3. Permutations. Let X be the set $X = \{a, b, c\}$. A function $\sigma : X \to X$ is called *bijection*, or *permutation*, or *isomorphism*, or *automorphism* if it is: (A) One-to-one, also denoted 1 1, i.e., σ satisfies the property that $\sigma(x) = \sigma(y)$ implies x = y for every $x, y \in X$, and (B) Onto, i.e., σ satisfies the property that for every $y \in X$ there exists $x \in X$ with $\sigma(x) = y$.
 - (a) Denote by $Aut(X) = \{\sigma : X \to X ; \sigma \text{ is a bijection}\}$ the set of ALL bijections from X to itself. Show that with the operation of standard composition \circ of functions, and the element $id : X \to X$, id(x) = x for every $x \in X$, we have that the triple $(Aut(X), \circ, id)$ is a group. The group $Aut(\{a, b, c\})$ is also denoted by S_3 and is called sometime the symmetric group on three letters.
 - 1. Main points. Closure and inverse.
 - 2. Proof. In fact we will show that for any non-empty set X the triple $(Aut(X), \circ, id)$ is a group.
 - 1. Closure. We know from set theory that the composition of two one-to-one and onto functions is a one-to-one and onto function. So Aut(X) is close under \circ , i.e., for every $\sigma, \tau \in Aut(X)$ we have also that $\sigma \circ \tau \in Aut(X)$.
 - 2. Associativity. Holds for composition of any three functions in general.
 - 3. Identity. For any $x \in X$, and any $\sigma \in Aut(X)$ we have $(\sigma \circ id)(x) = \sigma(id(x)) = \sigma(x) = id(\sigma(x)) = (id \circ \sigma)(x)$. So, $\sigma \circ id = \sigma = id \circ \sigma$.
 - 4. Inverse. A function from X to itself is invertible if and only if it is one-to-one and onto.
 - (b) Show that the number of elements in S_3 is 6.
 - 1. Main points. Counting.
 - 2. Proof. How we build a function in Aut(X)? We can send a to any of the three options a, b, c. Once we are done with it we can send b to two options, and then there is only one option for c. So, $3 \cdot 2 \cdot 1 = 6$ functions in Aut(X).
 - (c) Write all the elements of S_3 .
 - 1. Answer.

$$\begin{pmatrix} a & b & c \\ a & b & c \end{pmatrix}, \begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix}, \begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix}, \begin{pmatrix} a & b & c \\ c & b & a \end{pmatrix}, \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}, \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}.$$

- (d) A group G is called *commutative* if $g \cdot h = h \cdot g$ for every $g, h \in G$. Show that the group $(\mathbb{Z}, +, 0)$ of integers is commutative. Show that the group S_3 is not commutative.
 - 1. Answer. About \mathbbm{Z} we know this. About S_3 lets compute

$$\begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix} \circ \begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix} = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix} \neq \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix} = \begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix} \circ \begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix}.$$

• Remark:

• I will be happy to answer any question related to these solutions. Please visit me in my office hours.

Good Luck!