Math 541 Spring 2011 Preparation for the Final Test

Remarks

- Answer all the questions below.
- A definition is just a definition there is no need to justify it. Just write it down.
- Unless it's a definition, answers should be written in the following format:
 - Write the statement and/or result. *Statement*:.....
 - Write the main points that will appear in your explanation or proof or computation. Main points:.....
 - Write the actual explanation or proof or computation. *Proof*:..... or *Computation*:.....
- 1. Lagrange's theorem.
 - (a) (8) Let H be a subgroup of a group G. Define the index [G:H] of H in G.
 - (b) (16) State and prove Lagrange's theorem.
 - (c) (9) Let G be a group of order p, where p is a prime. Show that G is cyclic.
- 2. Normal subgroups and quotient groups.
 - (a) (8) Define the notion of a normal subgroup N of a group G.
 - (b) (16) Answer the following:
 - 1. Define the set G/N, the operation \circ , and the identity $1_{G/N}$ such that $(G/N, \circ, 1_{G/N})$ is a group.
 - 2. Show that indeed $(G/N, \circ, 1_{G/N})$ is a group with your definitions, and in particular \circ is well defined.
 - 3. Show that a group N is a normal subgroup of a group G if and only if there exists a group homomorphism $\varphi: G \to G'$ with kernel N.
 - (c) (9) Answer the following:
 - 1. Quote the theorem on the relation between the groups $G/\ker(\varphi)$ and $\operatorname{Im}(\varphi)$ for a group homomorphism $\varphi: G \to G'$.
 - 2. Define the groups O(3) and SO(3). Show that $SO(3) \triangleleft O(3)$ and find a group G such that $O(3)/SO(3) \simeq G$.
- 3. Finite subgroups of SO(3).

- (a) (9) Find (i.e. draw as clear as possible) subsets $\widetilde{\mathcal{P}_n}$, \mathcal{P}_k , $P, C, D \subset \mathbb{R}^3$, with stabilizer subgroups $Stab_{SO(3)}(\widetilde{\mathcal{P}_n}) \simeq C_n$, where C_n is the cyclic group of order $n, Stab_{SO(3)}(\mathcal{P}_k) \simeq D_k$, where D_k is the dihedral group of order $2k, Stab_{SO(3)}(P) \simeq$ A_4 , where A_4 is the alternating group of even permutations of four letters, $Stab_{SO(3)}(C) \simeq$ S_4 , where S_4 is the group of permutations of four letters, and $Stab_{SO(3)}(D) \simeq A_5$, where A_5 is the group of even permutations of five letters.
- (b) (16) Answer the following:
 - 1. Let $T = Stab_{SO(3)}$ (Pyramid). Find a natural isomorphism $r: T \to A_4$. Prove that indeed your r is an isomorphism.
 - 2. Let $O = Stab_{SO(3)}$ (Cube). Find a natural isomorphism $r : O \to S_4$. Prove that indeed your r is an isomorphism.
 - 3. Let $I = Stab_{SO(3)}$ (Dodecahedron). Find a natural isomorphism $r : I \to A_5$. Prove that indeed your r is an isomorphism (Remark: You can assume that I is simple).
- (c) (9) Quote the theorem of Klein on the classification of the finite subgroups of SO(3). Suppose $\Gamma \subset SO(3)$ is a subgroup of order 60 with an invariant vector for the action of Γ on \mathbb{R}^3 , i.e., there exists $0 \neq v \in \mathbb{R}^3$ such that

$$Av = v$$
, for every $A \in \Gamma$.

Then $G \simeq ???$

Good Luck!