Notes on April 11 Lecture

April 11, 2011

Theorem 1. If $N \triangleleft G$, (i.e. $\forall g \in G, gNg^{-1} = N$), then $\exists !$ group structure • on quotient G/N, which satisfies

$$\varphi: \quad G \mapsto G/N \\ g \mapsto gN$$

is homomorphism of groups.

Claim. The homomorphism φ : $G \mapsto G'$ now induces an isomorphism:

$$\bar{\varphi}: \quad G/\ker(\varphi) \simeq \operatorname{Im}(\varphi)$$
$$g \cdot \ker(\varphi) \mapsto \varphi(g)$$

Here is the proof of **Theorem 1**.

- 1. This map exists and is unique (well-defined).
 - (a) Uniqueness (namely, has to be defined of a very specific formula):

Proof. Since we want φ to be a homomorphism under the group structure \bullet , we require

$$\forall g, g' \in G, \quad \varphi(g) \bullet \varphi(g') = \varphi(gg')$$

which is to say,

$$\forall g, g' \in G, (gN) \bullet (g'N) = (gg')N$$

So we can only define \bullet in this way:

•:
$$G/N \times G/N \mapsto G/N$$

 $(gN, g'N) \mapsto (gg')N$

(b) Existence (the definition above is a well-defined map) Since this definition involves representative element (i.e. we use g in the expression of coset gN), to verify that it is well-defined, we should prove that the image of this map is independent of which representative element we choose. Namely, we want to verify that, if aN = gN, a'N = g'N, then (aa')N = (gg')N. First, we need a lemma here.

Lemma. If $N \triangleleft G$, then $\forall g \in G, gN = Ng$.

Proof.

$$gN = g(g^{-1}Ng)$$
 (by definition of normal group, $g^{-1}Ng = N$)
= $(gg^{-1})Ng$ (Associativity)
= Ng (Inverse)

Now we are ready for the proof of the existence.

Proof. The proof is straightforward by the Lemma we proved above:

(aa')N = a(a'N)	(Associativity)
= a(g'N)	(a'N = g'N)
=a(Ng')	(\mathbf{Lemma})
=(aN)g'	(Associativity)
=(gN)g'	(aN = gN)
=g(Ng')	(Associativity)
=g(g'N)	(\mathbf{Lemma})
=(gg')N	(Associativity)

2. $(G/N, \bullet, \text{something})$ is a group.

(a) Associativity

$$\forall g_1, g_2, g_3 \in G, [(g_1N) \bullet (g_2N)] \bullet (g_3N) = (g_1N) \bullet [(g_2N) \bullet (g_3N)]$$

Proof.

$$\begin{split} [(g_1N) \bullet (g_2N)] \bullet (g_3N) &= (g_1g_2N) \bullet (g_3N) & (\text{definition of } \bullet) \\ &= [(g_1g_2)g_3]N & (\text{definition of } \bullet) \\ &= [g_1(g_2g_3)]N & (\text{Associativity}) \\ &= (g_1N) \bullet (g_2g_3N) & (\text{definition of } \bullet) \\ &= (g_1N) \bullet [(g_2N) \bullet (g_3N)] & (\text{definition of } \bullet) \end{split}$$

(b) **Identity**

 $1_{G/N} \stackrel{\text{def}}{=} 1_G N = N$ (left coset of 1_G) is the identity of G/N.

Proof. Pick any $gN \in G/N$, we have

$$(gN) \bullet (1_GN) = (g \cdot 1_G)N = gN$$
$$(1_GN) \bullet (gN) = (1_G \cdot g)N = gN$$

(c) Inverse	$\mathbf{rs}\epsilon$
--------------------	-----------------------

 $\forall gN \in G/N, g^{-1}N$ is the inverse of it.

Proof.

$$(gN) \bullet (g^{-1}N) = (gg^{-1})N = 1_GN = N$$

 $(g^{-1}N) \bullet (gN) = (g^{-1}g)N = 1_GN = N$

Therefore $(gN)^{-1} = g^{-1}N$.

3. Note: we can verify that φ is indeed a homomorphism since by definition

$$\varphi(gg') = (gg')N = (gN) \bullet (g'N) = \varphi(g) \bullet \varphi(g')$$

Now we can proceed to prove the claim, since we have already proved that $G/\ker(\varphi)$ is a group. Note that $\ker(\varphi)$ is normal, and $\forall g \in G, \bar{\varphi}(g \cdot \ker(\varphi)) = \{\varphi(g)\}$, which implies that $\bar{\varphi}$ is onto. Denote $N = \ker(\varphi)$. So we can find a natual definition of $\bar{\varphi}$:

$$\bar{\varphi}: \quad G/\ker(\varphi) \mapsto \operatorname{Im}(\varphi)$$
$$gN \mapsto \varphi(g)$$

1. $\bar{\varphi}$ is homomorphism.

Proof.
$$\forall g N, g' N \in G/N$$
,
 $\bar{\varphi}[(gN) \bullet (g'N)] = \bar{\varphi}(gg'N)$ (definition of \bullet)
 $= \varphi(gg')$ (definition of $\bar{\varphi}$)
 $= \varphi(g)\varphi(g')$ (φ is homomorphism)
 $= \bar{\varphi}(gN)\bar{\varphi}(g'N)$ (definition of $\bar{\varphi}$)

2. $\bar{\varphi}$ is a bijection.

The injection part is trivial to proof since $\ker(\bar{\varphi}) = N$, which is the identity of G/N.

Theorem 2. If G is a group, N is a subgroup of G, then N is normal if and only if \exists homomorphism φ : $G \mapsto G'$, s.t. $N = ker(\varphi)$ *Proof.* The proof is trivial.

 \Leftarrow : Easy calculation.

 \Rightarrow : Define map $\varphi: G \mapsto G/N$ as in **Theorem 1**.

Quesion: How can we "see" G/N ?

Suppose $N \triangleleft G$, find a homomorphism $\varphi : G \mapsto G'$ with $\ker(\varphi) = N$, then $\operatorname{Im}(\varphi)$ is just isomorphism to G/N if we can explicitly compute $\operatorname{Im}(\varphi)$.

Example 1 $G = GL_2(\mathbb{R})$, which is the set of all 2×2 invertible real matrices.

 $N = \mathrm{SL}_2(\mathbb{R})$, set of all 2×2 invertible real matrices whose determinant = 1.

Since det is a homomorphism from G onto \mathbb{R}^* , and $\operatorname{Im}(\det)$ is exactly \mathbb{R}^* , so we can see that

 $\operatorname{GL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{R}) \simeq \mathbb{R}^*$