Notes on April 11 Lecture

April 11, 2011

Theorem 1. If N <G, (i.e Vg€ G,gNg ' =N ),
then 3! group structure e on quotient G /N, which satisfies

v: G—GJ/N
g—gN

is homomorphism of groups.

Claim. The homomorphism ¢ : G — G' now induces an isomorphism:

o Glker(p) ~ Im(p)
g - ker(p) = »(9)

Here is the proof of Theorem 1.
1. This map e exists and is unique (well-defined).
(a) Uniqueness (namely, e has to be defined of a very specific formula):

Proof. Since we want ¢ to be a homomorphism under the group structure e,
we require

Vg.g € G, plg)eely) =¢lgg')
which is to say,

V9,9 € G,(gN) e (¢'N) = (99)N
So we can only define e in this way:

e: G/NxG/Nw— G/N
(gN,g'N) = (99" )N



(b) Existence (the definition above is a well-defined map) Since this defi-
nition involves representative element (i.e. we use g in the expressison of coset
gN), to verify that it is well-defined, we should prove that the image of this
map is independent of which representative element we choose. Namely, we
want to verify that, if aN = gN, o’N = ¢’N, then (aa’)N = (g4’)N.

First, we need a lemma here.

Lemma. If N <G, then Vg € G,gN = Ng.

Proof.
gN = g(g"'Ng) (by definition of normal group, g ' Ng = N)
= (997")Ng (Associativity)
=Ny (Inverse)
O
Now we are ready for the proof of the existence.
Proof. The proof is straightforward by the Lemma we proved above:
(aa")N = a(a'N) (Associativity)
=a(g'N) (@'N =g'N)
=a(Ng') (Lemma)
= (aN)g (Associativity)
= (gN)g (aN = gN)
=g(Ng') (Associativity)
=g(¢g'N) (Lemma)
= (99 )N (Associativity)
O
2. (G/N, e, something) is a group.
(a) Associativity
V91, 92,93 € G, [(91N) @ (92N)] @ (93N) = (91 N) ® [(92N) ® (93N)]
Proof.
[(g1N) ® (92N)] @ (g3N) = (9192N) ® (g3N) (definition of e)
= [(9192)93] N (definition of e)
= [91(9293)| N (Associativity)
= (g1N) ® (9293N) (definition of e)
= (g1N) o [(92N) @ (g3N)]  (definition of e)
O



(b) Identity

la/n def 1N = N (left coset of 1¢) is the identity of G/N.

Proof. Pick any gN € G/N, we have

(gN) e (1gN) = (g9-1g)N = gN
(IgN) e (gN) = (1g-g)N = gN

O
(c) Inverse
VgN € G/N, g~ !N is the inverse of it.
Proof.
(gN) o (g7'N) = (997 ')N = 1gN = N
(97'N) o (gN) = (g7'g)N =1gN = N
Therefore (gN)™! = g7 'N. O

3. Note: we can verify that ¢ is indeed a homomorphism since by definition
v(99") = (99" )N = (gN) ¢ (¢'N) = ¢(g) ® ¢(g')

Now we can proceed to prove the claim, since we have already proved that G /ker(yp)
is a group. Note that ker(y) is normal, and Vg € G, ¢(g-ker(p)) = {¢(g)}, which implies
that @ is onto. Denote N = ker(¢). So we can find a natual defintion of @:

¢ : G/ker(p) — Im(p)

gN = ©(g)
1. ¢ is homomorphism.
Proof. YgN,g'N € G/N,
pllgN) o (¢'N)] = ¢(9g'N) (defnition of e)
= (99 (defnition of @)
= 0(9)e(9) (¢ is homomorphism)
= p(gN)p(g'N) (defnition of @)

2. @ is a bijection.

The injection part is trivial to proof since ker(@) = N, which is the identity of
G/N.

Theorem 2. If G is a group, N is a subgroup of G, then
N is normal if and only if 3 homomorphism ¢ . G w— G', s.t. N = ker(p)
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Proof. The proof is trivial.
< : Easy calculation.
= : Define map ¢ : G +— G/N as in Theorem 1.
O

Quesion: How can we “see” G/N 7
Suppose N <1 G, find a homomorphism ¢ : G — G’ with ker(¢) = N, then Im(p) is
just isomorphism to G/N if we can explicityly compute Im(yp).

Example 1 G = GLy(R), which is the set of all 2 x 2 invertible real matrices.
N = SLy(R), set of all 2 x 2 invertible real matrices whose determinant= 1.

Since det is a homomorphism from G onto R*, and Im(det) is exactly R*, so we can
see that



