Math 491 - Linear Algebra II, Fall 2015

Practice Final

May 11, 2015

<u>Remarks</u>

- Answer all the questions below. The best three (a), (b), and (c) will be counted towards your score.
- A definition is just a definition there is no need to justify it. Just write it down.
- Unless it's a definition, answers should be written in the following format:
 - Write the main points that will appear in your proof of computation. *Main points:...*
 - Write the actual explanation or proof or computation. *Proof*.... or *Computation*....
- 1. Primary Decomposition Theorem
 - (a) (8) State precisely the Primary Decomposition Theorem.
 - (b) (15) Let $T: V \to V$ be a linear transformation. Show that

$$m_T(x) = (x - \lambda_1) \cdots (x - \lambda_s),$$

for distinct $\lambda_i \in \mathbb{F}$ if and only if *T* is diagonalizable.

(c) (10) Consider the transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T_A(v) = Av$, where

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 6 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

Compute $m_A(x)$ and use the criterion in (b) to decide if T_A is diagonalizable.

- 2. Jordan Decomposition
 - (a) (8) Define the notion of a Jordan block, a Jordan matrix with one eigenvalue, and a Jordan matrix with multiple eigenvalues. State precisely the Jordan Theorem.

- (b) (15) Write down all possible 4×4 Jordan matrices in $M_4(\mathbb{F})$.
- (c) (10) In the following True and False, if you answer true, prove the statement, and if you answer false, provide a justified counterexample. Let $A, B \in M_4(\mathbb{C})$.
 - (i) T / F If $m_A = m_B$, then A and B are similar.
 - (ii) T / F If $m_A = m_B$ and $p_A = p_B$, then A and B are similar.
- 3. Similarity
 - (a) (8) Define when two linear transformations $S, T : V \to V$ are similar, and when two matrices $A, B \in M_n(\mathbb{F})$ are similar.
 - (b) (15) let $S, T : V \to V$ be two linear transformations of a vector space V over \mathbb{F} . Show that S and T are similar if and only if there exists bases \mathcal{B} and \mathcal{C} of V, such that the matrices $[S]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$ in $M_n(\mathbb{F})$ are similar.
 - (c) (10) Let *V* be a vector space over $\mathbb{F} = \mathbb{C}$. Prove that two transformations *S*, *T* : $V \rightarrow V$ are similar if and only if they have the same Jordan Form (up to a permutation of the Jordan blocks).
- 4. Computing a Jordan Basis
 - (a) (8) Let $T : V \to V$ be a linear transformation. Define the notion of a Jordan basis for *V* associated to *T*.
 - (b) (15) Find a Jordan basis for $T_A : \mathbb{R}^4 \to \mathbb{R}^4$, where

$$A = egin{pmatrix} 0 & -1 & 2 & -2 \ 1 & 2 & -2 & 2 \ 0 & 0 & 2 & -1 \ 0 & 0 & 1 & 0 \end{pmatrix}.$$

(c) (10) Let A be the matrix given in 4(b). Compute A^{2015} .