
Math 491 - Linear Algebra II, Fall 2015

Practice Final

May 3, 2016

Remarks

• Answer all the questions below. The best three (a), (b), and (c) will be counted
towards your score.

• A definition is just a definition - there is no need to justify it. Just write it down.

• Unless it’s a definition, answers should be written in the following format:

– Write the main points that will appear in your proof of computation. Main
points:...

– Write the actual explanation or proof or computation. Proof:... or Computation:...

1. Jordan Canonical Form

(a) (8) Define the following types of matrices:
(i) A Jordan block Jr(λ) ∈ Mr(C) associated to eigenvalue λ;

(ii) A Jordan array J(λ) ∈ Mk(C) associated to eigenvalue λ and the notion of
index of an array;

(iii) A Jordan matrix J ∈ Mn(C).
State precisely the Jordan canonical form theorem for an operator T : V → V
where V is an n-dimensional vector space over C.

(b) (15) Assume that V is a vector space over C of dimension 4. Let T : V → V be
a linear transformation.
(i) Recall that there exists a Jordan basis B of V such that [T]B = J where

J ∈ M4(C) is a Jordan matrix. Show that, up to permutation of the Jordan
blocks, J is the unique Jordan matrix for which a Jordan basis for T exists.

(ii) Compute a Jordan basis for the transformation TA : R4 → R4 defined by
TA(v) = Av, where

A =


4 0 1 0
2 2 3 0
−1 0 2 0
4 0 1 2

 .
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(c) (10) Let T, S : V → V be two linear transformations on a finite dimensional
vector space V over F. Suppose that mT(x) = mS(x), and

pT(x) = pS(x) = (x− λ1)
d1 · · · (x− λk)

dk .

Suppose the λi ∈ F are distinct, and for all 1 ≤ i ≤ k, 1 ≤ di ≤ 3. Show that T
and S are similar.

2. Inner Product Spaces

(a) (8) Define the notion of an inner product space over F = R or C.

(b) (15) Define when two inner product spaces are isometric. Show that if (V, 〈·, ·〉)
is an n-dimensional inner product space then it is isometric to (Fn, 〈·, ·〉st).

(c) (10) Let V = R≤3[x] be the vector space of real polynomials with degree at
most 3. Given two polynomials, f , g ∈ V, recall that the pairing

〈 f , g〉 =
∫ 1

−1
f (x)g(x) dx

defines an inner product on V. Let W = Span{x2, x + 1, x3}. Use the Gram-
Schmidt process to find an orthonormal basis for W.

3. Adjoint Operator

(a) (8) Let T be a linear transformation on a finite dimensional inner product space
(V, 〈·, ·〉). Define the adjoint operator T∗ : V → V.

(b) (15) Let T be a linear transformation on a finite dimensional inner product
space (V, 〈·, ·〉). Show that T∗ is unique and prove its existence.

(c) (10) Let F = R or C. For A ∈ Mn(F) define the matrix A∗ and write a formula
for it in terms of A. Let (V, 〈·, ·〉) be an n-dimensional inner product space
over F. Show that if T : V → V is a linear transformation and B ⊂ V is an
orthonormal basis for V then

[T∗]B = [T]∗B.

4. Spectral Theorem

Throughout this problem, assume that (V, 〈·, ·〉) is a finite dimensional inner prod-
uct space over C.

(a) (8) Define the notion of a normal operator T : V → V.

(b) (15) State and then prove the spectral theorem for an operator T on V.
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(c) (10) Let V = C(F5) be the vector space of complex valued functions on F5.
Given two vectors f , g ∈ V, the pairing

〈 f , g〉 = ∑
x∈F5

f (x)g(x),

defines an inner product on V. Let F : V → V be the discrete Fourier trans-
form, i.e. the linear transformation defined by

F ( f )(y) =
1√
5

∑
x∈F5

e
2πi

5 ·xy f (x).

Show that F is unitary and diagonalizable.
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