Math 491 - Linear Algebra II, Fall 2016

Homework 9 - Inner Product Spaces and Gram-Schmidt

Quiz on 4/19/16

Remark: Answers should be written in the following format: A) Result.

B) If possible, the name of the method you used.

C) The computation or proof.

- 1. Orthogonal Sets are Linearly Indepedent. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{F} (\mathbb{R} or \mathbb{C}). Suppose that $S \subset V$ is an orthogonal set that does not contain the zero vector, i.e. for any distinct $u, v \in S$ we have $\langle u, v \rangle = 0$ (denoted $u \perp v$). Show that *S* is linearly independent over \mathbb{F} .
- 2. A Couple of Identities. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{F} (\mathbb{R} or \mathbb{C}). Recall that we can define a norm on V by defining $||v|| = \sqrt{\langle v, v \rangle}$. Let $u, v \in V$. Show that

$$||u+v||^2 = ||u||^2 + ||v||^2 + \langle u,v \rangle + \langle v,u \rangle.$$

Use this identity to quickly deduce the following theorems. In each case, draw a picture that demonstrates the geometric meaning of each theorem.

(i) (Parallelogram Identity)

$$||u + v||^{2} + ||u - v||^{2} = 2||u||^{2} + 2||v||^{2}.$$

(ii) (Pythagorean Theorem) Suppose $u \perp v$. Then

$$||u + v||^2 = ||u||^2 + ||v||^2.$$

3. An Isomorphism to the Dual Space. Let *W* be a finite dimensional vector space over \mathbb{F} (\mathbb{R} or \mathbb{C}). Denote by \overline{W} the vector space with *W* as the set of vectors, the same addition of vectors, but where scalar multiplication is defined by:

$$a \star w = \bar{a} \cdot w$$

for any $a \in \mathbb{F}$ and $w \in W$, where \overline{a} denotes the complex conjugate of a.

Let *V* be a finite dimensional vector space over $\mathbb{F}(\mathbb{R} \text{ or } \mathbb{C})$.

- (a) Show that having an inner product on *V* induces an isomorphism from *V* to $\overline{V^*}$ where V^* is the dual space to *V*.
- (b) Show that having an isomorphism from V to $\overline{V^*}$ defines an inner product on V.
- 4. The Gram-Schmidt Algorithm. Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space over \mathbb{F} (\mathbb{R} or \mathbb{C}) and let $W \subseteq V$ be a subspace of V. The Gram-Schmidt algorithm takes as input a basis for the subspace W and outputs an orthonormal basis for W.

Before presenting the algorithm, we give a convenient definition. Let $u, v \in V$. Define the (orthogonal) projection of v onto u by

$$\operatorname{proj}_{u}(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} \cdot u.$$

Gram-Schmidt Algorithm

Input: $\mathcal{B} = \{w_1, \dots, w_k\}$ a basis for *W*.

(1) Set $u_1 = w_1$. For i = 2, ..., k, set

$$u_i = w_i - \sum_{j=1}^{i-1} \operatorname{proj}_{u_j}(w_i).$$

(2) For
$$i = 1, \ldots, k$$
, replace u_i with $\frac{u_i}{||u_i||}$.

Output: $\mathcal{B}' := \{u_1, ..., u_k\}.$

- (a) Show that \mathcal{B}' is an orthonormal basis for W, i.e. that the algorithm returns a correct output. (Hint: Show that \mathcal{B}' is an orthogonal set and apply problem 1.)
- (b) In Matlab write an m-file that implements the above algorithm. Verify that your implementation is correct by checking its output on the example $V = \mathbb{R}^3$ with the usual inner product and

$$W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \right\}.$$

5. Gram-Schmidt Examples.

(a) Let $V = \mathbb{R}^4$ with inner product taken to be the dot product of two vectors. Use the Gram-Schmidt algorithm to compute an orthonormal basis of *W* where

$$W = \operatorname{Span}\left\{ \begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\2\\2 \end{pmatrix} \right\}.$$

(b) Let $V = \mathbb{R}_{\leq 3}[x]$ be the vector space of real polynomials with degree at most 3. Recall that the function

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x)dx$$

defines an inner product on *V*. Use the Gram-Schmidt algorithm to compute an orthonormal basis of *V* by beginning with the basis $\mathcal{B} = \{1, x, x^2, x^3\}$.