Math 491 - Linear Algebra II, Fall 2015

Homework 7 - More on Diagonalization and Related Topics

Quiz on 4/9/15

Remark: Answers should be written in the following format: A) Result.

B) If possible, the name of the method you used.

C) The computation or proof.

1. Diagonalizable Operators on Invariant Subspaces. Let $T : V \to V$ be a diagonalizable operator on a finite dimensional vector space V over a field \mathbb{F} . Suppose $W \subset V$ is a *T*-invariant subspace. Show that $T|_W$ is diagonalizable by considering the minimal polynomial $m_{T|_W}$.

Hint: Use the fact that *T* is diagonalizable if and only if its minimal polynomial is the product of distinct monic linear polynomials.

- 2. Simultaneous Diagonalizability. Let $S, T : V \to V$ be linear transformations. We say that S, T are simultaneously diagonalizable if there exists a direct sum decomposition $V = \bigoplus_{i=1}^{k} V_i$, and scalars $\lambda_i, \mu_i \in \mathbb{F}$, such that $T|_{V_i} = \lambda_i Id_{V_i}, S|_{V_i} = \mu_i Id_{V_i}$ for i = 1, ..., k.
 - (a) Assume that S, T are diagonalizable. Show that ST = TS if and only if S, T are simultaneously diagonalizable. Recall, that you showed one direction of this in a previous HW.
 - (b) Let *V* be a finite dimensional vector space over a field \mathbb{F} . Denote by L(V) the set of linear transformations from *V* to itself.
 - (i) Show that L(V) is an algebra over \mathbb{F} in a natural way. That is, it has a natural addition and multiplication.
 - (ii) Let $C \subset L(V)$ be a subalgebra, i.e. closed under multiplication and addition, consisting of diagonalizable operators. Show that all elements of C are simultanteously diagonalizable if and only if C is commutative.

Here simultaneously diagonalizable means there exists a decomposition $V = \bigoplus_{i=1}^{k} V_i$ such that $T|_{V_i} = \lambda_{T_i} \cdot Id_{V_i}$ for any $T \in C$. Recall, an algebra C is commutative if for any $C_1, C_2 \in C$ we have $C_1C_2 = C_2C_1$.

3. Nilpotent Operators. Let $T : V \to V$ be a linear transformation on a finite dimensional vector space V over \mathbb{F} . We say that T is <u>nilpotent</u> if there exists a flag of subspaces of V,

$$\{0_V\} = V_0 \subset V_1 \subset \cdots \subset V_k = V,$$

such that $T(V_i) \subset V_{i-1}$ for all i = 1, ..., k.

- (a) Show the following operators are nilpotent by constructing a flag as above.
 - (i) The derivative operator D on $\mathbb{F}_{\leq 3}[x]$, the space of polynomials over \mathbb{F} of degree at most 3.
 - (ii) The operator $T_A : \mathbb{R}^3 \to \mathbb{R}^3$, defined by multiplication by

$$A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}.$$

- (b) Show *T* is nilpotent if and only if $T^k = 0$ for some integer k > 0.
- (c) Show *T* is nilpotent if and only if there is a basis \mathcal{B} of *V* such that $[T]_{\mathcal{B}}$ is a strictly upper-triangular matrix, i.e. all entries on and below the diagonal are 0.
- (d) Let *V* be a vector space over \mathbb{F} . Consider a flag of the form:

$$\mathcal{F}: \{0_V\} = V_0 \subset V_1 \subset \cdots \subset V_k = V.$$

Denote by $N_{\mathcal{F}}$ the set of all linear transformations $T : V \to V$, such that $T(V_i) \subset V_{i-1}$ for i = 1, ..., k. Show $N_{\mathcal{F}}$ is a subalgebra of L(V), i.e. it is closed under addition and composition.

- (e) Let $\mathcal{N} \subset L(V)$ be a maximal collection of commuting nilpotent operators. Show that \mathcal{N} is a subalgebra.
- 4. **Spectral Decomposition.** Let $T : V \to V$ be a diagonalizable operator on a finite dimensional vector space *V* over **F**. Then

$$V = \bigoplus_{\lambda \in \operatorname{Spec}(T)} V_{\lambda},$$

where $V_{\lambda} = \ker(T - \lambda Id)$. Denote by P_{λ} the projector on *V* defined by $P_{\lambda}|_{V_{\lambda}} = Id|_{V_{\lambda}}$, and $P_{\lambda}|_{V_{\mu}} = 0$ for every $\mu \neq \lambda$.

(a) Show

$$P_{\lambda} = rac{1}{\prod_{\mu \neq \lambda} (\lambda - \mu)} \prod_{\mu \neq \lambda} (T - \mu \cdot Id),$$

where the products range over $\mu \in \text{Spec}(T)$ and $\mu \neq \lambda$.

(b) Show

$$T = \sum_{\lambda \in \operatorname{Spec}(T)} \lambda \cdot P_{\lambda}.$$

This decomposition is sometimes called the spectral decomposition of T.

Remark

The grader and the Lecturer will be happy to help you with the homework. Please visit office hours.

Good luck!