Math 491 - Linear Algebra II, Fall 2016

Homework 6 - Characteristic and Minimal Polynomials

Quiz on 3/15/16

Remark: Answers should be written in the following format:A) Result.B) If possible, the name of the method you used.C) The computation or proof.

Theoretical Exercises

1. Minimal Polynomials and Diagonalizability. Let $T : V \to V$ be a linear transformation on a finite dimensional vector space V over \mathbb{F} . Recall that the minimal polynomial of T, denoted $m_T(x)$, is the unique monic polynomial of minimal degree that annihilates T, i.e. $m_T(T) = 0$. Moreover, $m_T(x)$ divides the characteristic polynomial, $p_T(x)$, which also annihilates T. The minimal polynomial gives the following characterization of a transformation being diagonalizable.

<u>Theorem</u> $T : V \to V$ is diagonalizable if and only if $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_k)$ for distinct $\lambda_i \in \mathbb{F}$.

For each of the following matrices *A*, compute $p_A(x)$, $m_A(x)$, and use the above theorem to decide whether *A* is diagonalizable:

$$\begin{pmatrix} 3 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

2. Minimal and Characteristic Polynomials.

- (a) Assume $A \in M_n(\mathbb{C})$ has minimal polynomial $m_A(x) = x^6 4x^4 + 3x^2 + 1$. Find the minimal polynomial of the matrix A^2 .
- (b) Assume $A \in M_4(\mathbb{C})$ has characteristic polynomial $p_A(x) = x^4 + 3$. Find the characteristic polynomial of the matrix A^2 .
- (c) Assume $A \in M_2(\mathbb{C})$ has minimal polynomial $m_A(x) = x^2 + x + 1$. Find the minimal polynomial of the matrix A^2 .

- 3. The Centralizer of an Operator. Let $T : V \to V$ be a linear transformation of an *n*-dimensional vector space over \mathbb{F} . Assume *T* has *n* distinct eigenvalues.
 - (a) Let $S : V \to V$ be a linear transformation such that ST = TS. Show that S is diagonalizable.
 - (b) Recall that L(V) is the algebra (i.e., it has a product in addition to a vector space structure) of linear transformations from V to itself. Define the <u>centralizer of T</u> in L(V) by

$$Z(T) = \{ S \in \mathcal{L}(V) \mid ST = TS \}.$$

Show that *Z*(*T*) is a commutative subalgebra of $\mathcal{L}(V)$, i.e. show that

- (i) Z(T) is a subspace of $\mathcal{L}(V)$, i.e., it is closed under addition, scalar multiplication, and $0_{\mathcal{L}(V)} \in Z(T)$.
- (ii) Z(T) is a subalgebra, i.e., it is closed under multiplication and $Id_V \in Z(T)$.
- (iii) Z(T) is commutative, i.e., for $S_1, S_2 \in Z(T)$ we have $S_1S_2 = S_2S_1$.

Finally, show that dim Z(T) = n.

- (c) Assume now that *T* is diagonalizable (although it may not have *n* distinct eigenvalues). What can you say about dim Z(T)?
- 4. Working in \mathbb{C} to get information in \mathbb{R} . This exercise outlines two different proofs of the same result.
 - (a) Let $A \in M_2(\mathbb{R})$ and suppose $p_A(x) = x^2 + 1$. Show there exists an invertible matrix $P \in M_2(\mathbb{R})$ such that

$$C^{-1}AC = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Hint: First, show that there is an invertible matrix $C \in M_2(\mathbb{C})$ such that

$$AC = C \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Now, recall the fact that a linear system defined over \mathbb{R} that has a solution in \mathbb{C} , also has a solution in \mathbb{R} .

(b) Let $T : V \to V$ be a linear transformation of a 2-dimensional vector space V over \mathbb{R} . Assume the characteristic polynomial of T is $p_T(x) = x^2 + 1$. Show that there exists a basis \mathcal{B} of V such that

$$[T]_{\mathcal{B}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Hint: Fix a nonzero vector $v \in V$ and consider the vectors v, Tv.

Computational Exercises

- 5. Verifying Cayley-Hamilton. As a warm-up, use Matlab to verify the Cayley-Hamilton Theorem for the matrices appearing in problem 1. That is, input each of the matrices into Matlab as A, and the verify that $p_A(A) = 0$.
- 6. **The Power Method.** In many physical applications or dynamic systems, the largest eigenvalue associated to a matrix represents the dominant and most interesting mode of behavior. The Power Method is a naive algorithm that attempts to compute the largest magnitude eigenvalue. Specifically, the algorithm runs like this.
 - 1. **Input:** a matrix $A \in M_n(\mathbb{R})$ and a fixed number *N* of steps desired
 - 2. Initialize: choose a random unit vector $x^0 \in \mathbb{R}^n$ and set $r_0 = 0$
 - 3. Iterate: for k = 0, 1, 2, ..., N

•
$$x^{k+1} := \frac{Ax^k}{||Ax^k||}$$

• $r_{k+1} := \frac{(x^k)^\top Ax^k}{||x^k||^2}$

end

- 4. **Output:** a unit vector x^N and number r_N
- (a) Write a Matlab m-file that implements the above algorithm. Discuss whether your algorithm is working by considering the output when it runs with input N = 100 and

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 7 & 5.5 & -7 \\ 5 & 2.5 & -4 \end{pmatrix}.$$

(b) Assume now that the input matrix A is diagonalizable and that it has a unique eigenvalue of largest magnitude. Moreover, assume that the random initial unit vector has a nonzero component when projected onto this eigenspace. Show that the output of the Power Method converges (up to a sign) to an eigenvector corresponding to this largest eigenvalue.

Remark

The grader and the Lecturer will be happy to help you with the homework. Please visit office hours.

Good luck!