Math 491 - Linear Algebra II, Fall 2016

Homework 5 - Quotient Spaces and Cayley–Hamilton Theorem

Quiz on 3/8/16

Remark: Answers should be written in the following format:A) Result.B) If possible, the name of the method you used.

C) The computation or proof.

1. **Quotient space.** Let *V* be a vector space over a field \mathbb{F} and $W \subset V$ subspace. For every $v \in V$ denote by v + W the set

$$v+W=\{v+w\mid w\in W\},$$

and call it the <u>coset</u> of v with respect to W. Denote by V/W the collection of all cosets of vectors of V with respect to W, and call it the quotient of V by W.

(a) Define the operation + on V/W by setting,

$$(v+W)+(u+W)=(v+u)+W.$$

Show that + is well-defined. That is, if $v, v' \in V$ and $u, u' \in V$ are such that v + W = v' + W and u + W = u' + W, show

$$(v+W)+(u+W) = (v'+W)+(u'+W).$$

Hint: It may help to first show that for vectors $v, v' \in V$, we have v + W = v' + W if and only if $v - v' \in W$.

(b) Define the operation \cdot on V/W by setting,

$$\alpha \cdot (v + W) = \alpha \cdot v + W.$$

Show that \cdot is well-defined. That is, if $v, v' \in V/W$ and $\alpha \in \mathbb{F}$ such that v + W = v' + W, show that

$$\alpha \cdot (v+W) = \alpha \cdot (v'+W).$$

(c) Define $0_{V/W} \in V/W$ by $0_{V/W} = 0_V + W$. Show that $0_{V/W}$ acts as a zero vector in V/W. That is, for any $v + W \in V/W$, we have

$$(v+W) + 0_{V/W} = 0_{V/W} + (v+W) = v + W.$$

(d) It can be shown that the quadruple $(V/W, +, \cdot, 0_{V/W})$ is a vector space over \mathbb{F} . Assume now that *V* is finite dimensional. Show that

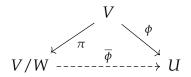
$$\dim(V/W) = \dim(V) - \dim(W).$$

Hint: If dim(*W*) = k, you may wish to extend a basis { $w_1, ..., w_k$ } of *W* to a basis of *V*.

2. A Universal Property. Let *V* be a vector space over \mathbb{F} and $W \subset V$ a subspace. Consider the canonical projection

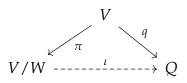
$$\pi: V \to V/W,$$
$$v \mapsto v + W.$$

- (a) Show that $ker(\pi) = W$.
- (b) We will show that the linear transformation π satisfies the following property: For every vector space U and linear transformation $\phi : V \to U$, such that $W \subset \ker(\phi)$, there exists a unique linear transformation $\overline{\phi} : V/W \to U$ such that the following diagram commutes:



i.e., $\overline{\phi} \circ \pi = \phi$. To do this,

- (i) Show that there exists at most one such linear transformation $\overline{\phi}$. What must be its formula?
- (ii) Construct such a $\overline{\phi}$.
- (c) **The Universal Property.** Let *Q* be a vector space. Suppose we have a linear transformation $q : V \to Q$ that satisfies the same property as π above. Show that there is a unique isomorphism $\iota : V/W \xrightarrow{\sim} Q$ such that $\iota \circ \pi = q$,



3. Induced Linear Transformations. Let $T : V \to V$ be a linear transformation on a vector space V and let $W \subset V$ be a subspace such that $T(W) \subset W$, that is, W is T-invariant. Define a map

$$\overline{T}: V/W \to V/W,$$

 $v+W \mapsto T(v)+W.$

Show that \overline{T} is well-defined, i.e. independent of representatives. We define a representative of a coset v + W as any vector $v' \in V$ such that v + W = v' + W.

4. **Cayley–Hamilton Theorem** This exercise will guide you through a proof of the following theorem:

<u>**Theorem</u>** (Cayley–Hamilton) Let $T : V \to V$ be a linear transformation on a finite dimensional vector space *V* over a field **F**. Then $p_T(T) = 0$.</u>

In class, we will show that the general statement follows from the case when \mathbb{F} is algebraically closed, and this is what we assume from now on. Prove the theorem using the following steps:

(a) Show that the theorem is true for $T_U : \mathbb{F}^n \to \mathbb{F}^n$ where

Hint: Apply $p_{T_U}(U)$ on the standard basis vectors $e_n, ..., e_1$.

(b) Show that the theorem is true if there exists a "flag" in *V* invariant under *T*, i.e., a sequence of subspaces

$$\{0_V\} \subset V_1 \subset V_2 \subset \cdots \subset V_n = V,$$

such that dim(V_i) = *i*, and $T(V_i) \subset V_i$ for all i = 1, ..., n. Hint: Take a basis $\mathcal{B} = \{v_1, ..., v_n\}$ of *V* with $\mathcal{B}_i = \{v_1, ..., v_i\}$ a basis of V_i for each *i*, and consider $[T]_{\mathcal{B}} = U$.

- (c) Show by induction on dim(V) = n that such a flag exists for any linear transformation T : V → V. The case dim(V) = 1 is trivial. Now assume the theorem holds for any linear transformation on a vectors space of dimension less than n. Complete the induction step in the following way:
 - (i) Show that $P_T(X)$ has a root λ_1 and an associated eigenvector v_1 . Construct the subspace $V_1 = \text{Span}(\{v_1\})$ and note that it is *T*-invariant.

(ii) Consider the induced linear transformation $\overline{T} : V/V_1 \to V/V_1$ and note $\dim(V/V_1) = n - 1$. By the induction assumption, there is a flag of \overline{T} -invariant subspaces

$$\{0_{V/V_1}\} \subset \overline{V_2} \subset \overline{V_3} \subset \cdots \subset \overline{V_n} = V/V_1.$$

Recall, there is a canonical projection $\pi : V \to V/V_1$ and for any subset $S \subset V/V_1$, we have $\pi^{-1}(S) = \{v \in V \mid \pi(v) \in S\}$. Show that the sequence

$$\{0_V\} \subset V_1 \subset \pi^{-1}(\overline{V_2}) \subset \cdots \pi^{-1}(\overline{V_n}) = V,$$

is a *T*-invariant flag in *V*.