Math 491 - Linear Algebra II, Fall 2015

Homework 4 - Factorization, Eigenvalues, and Diagonalization

Quiz on 3/1/16

Remark: Answers should be written in the following format:

- A) Result.
- B) If possible, the name of the method you used.
- C) The computation or proof.
 - 1. Let

$$f(X) = X^3 - 6X^2 + 11X - 6$$

$$g(X) = X^3 - 4X^2 + 5X - 2$$

$$h(X) = X^3 - 5X^2 + 8X - 4$$

be three real polynomials. Compute the greatest common divisor of f, g, h.

2. Let $T: \mathbb{F}_2^4 \to \mathbb{F}_2^4$ be the linear transformation defined by

$$(x_1, x_2, x_3, x_4) \mapsto (x_1 + x_3, -x_1 - x_3, x_2 + x_4, x_2 - x_4).$$

Find all eigenvalues of *T* and for each eigenvalue, compute the corresponding eigenspace.

3. For each of the possible values of the matrix $A \in M_3(\mathbb{Q})$ below,

$$\left(\begin{array}{ccc} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{array}\right), \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right),$$

find their eigenvalues (in \mathbb{Q}) and compute the corresponding eigenspaces. Then decide if there exists an invertible 3×3 matrix C such that $C^{-1}AC$ is diagonal. If such a matrix C exists, find C and compute $C^{-1}AC$.

- 4. (a) Let \mathbb{F} be an algebraically closed field. Let V be a vector space over \mathbb{F} and $T:V\to V$ a linear transformation. Show that T has at least one eigenvalue.
 - (b) Find an example of a non-algebraically closed field \mathbb{F} , a vector space V over \mathbb{F} , and a linear transformation $T:V\to V$ such that T has no eigenvalues.
- 5. Let $P:V\to V$ be a linear transformation on a vector space V over a field $\mathbb F$ such that $P^2=P$. Show that P is diagonalizable.

- 6. Let $T:V\to V$ be a linear transformation, where V is a vector space of dimension n over a field \mathbb{F} . A subspace $W\subset V$ is called $\underline{T\text{-invariant}}$ if $T(W)\subset W$. Suppose that in addition we have another operator $S:V\to V$ and that S and T commute, i.e. ST=TS. Show that
 - (a) If $W = W_{\mu}$ is an eigenspace for S associated with the eigenvalue $\mu \in \mathbb{F}$, then W is T-invariant.
 - (b) If S, T are each diagonalizable, then they are $\underline{\text{simultaneously}}$ diagonalizable, i.e., there exist scalars μ_i , $\lambda_i \in \mathbb{F}$, for i = 1, ..., k, and a direct sum decomposition

$$V = \bigoplus_{i=1}^k V_i,$$

such that $S|_{V_i} = \mu_i Id_{V_i}$ and $T|_{V_i} = \lambda_i Id_{V_i}$ for every i = 1, ..., k.

7. Let $T: V \to V$ be a linear transformation on a finite dimensional vector space V over a field \mathbb{F} . Assume there exists $\mu_1, \ldots, \mu_k \in \mathbb{F}$ and T-invariant subspaces V_1, \ldots, V_k of V such that $V = V_1 \oplus \cdots \oplus V_k$, and for each $i = 1, \ldots, k$ we have $T|_{V_i} = \mu_i \cdot Id_{V_i}$. Show that

$$V = \bigoplus_{\lambda \in \operatorname{Spec}(T)} V_{\lambda},$$

where V_{λ} is the eigenspace associated to λ , i.e., $V_{\lambda} = \{v \in V \mid T(v) = \lambda v\}$.

Remark

The grader and the Lecturer will be happy to help you with the homework. Please visit office hours.

Good luck!