Math 491 - Linear Algebra II, Fall 2015

Homework 3 - Factorization and Finding Eigenvalues

Quiz on 2/26/15

Remark: Answers should be written in the following format: A) Result.

B) If possible, the name of the method you used.

C) The computation.

- 1. Factoring real polynomials in $\mathbb{C}[X]$. Let $f(X) = X^2 + bX + c \in \mathbb{R}[X]$. Factor f(X) into linear polynomials in $\mathbb{C}[X]$. Hint: Try the quadratic formula.
- 2. Factoring in $\mathbb{R}[x]$. Recall, that an element $r \in R$ is irreducible if for any $a, b \in R$ such that r = ab then either $a \in R^{\times}$ or $b \in R^{\times}$. Factor the following polynomials from $\mathbb{R}[X]$ into irreducibles.
 - (a) $f(X) = X^4 + 1$

(b)
$$f(X) = X^6 - 1$$

- 3. **Ideals in** $M_n(\mathbb{F})$. Let \mathbb{F} be a field and let $R = M_n(\mathbb{F})$ be the ring of $n \times n$ matrices over \mathbb{F} . Show that that are no ideals (two-sided) in R other than $\{0\}$ and R.
- 4. Irreducibles need not be primes. Recall that in an integral domain *R*, a nonzero non-unit $q \in R$ is prime if whenever $q \mid ab$ then either $q \mid a$ or $q \mid b$. Consider the subring *S* of \mathbb{C} ,

$$S = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\}.$$

Show that in this integral domain, $2 \in S$ is irreducible but not prime.

- 5. **Eigenvalues over** \mathbb{R} and \mathbb{C} . For each of the following linear transformations, find all eigenvalues. For each eigenvalue, find the corresponding case. In each case, do the problem first with $\mathbb{F} = \mathbb{R}$ and then again with $\mathbb{F} = \mathbb{C}$.
 - (a) $T: \mathbb{F}^3 \to \mathbb{F}^3$, $T(x_1, x_2, x_3) = (x_1 + x_2, x_2 + x_3, x_1 + x_3).$
 - (b) $T: \mathbb{F}^2 \to \mathbb{F}^2$,

 $T(x_1, x_2) = (x_1 + x_2, x_1 - x_2).$

(c)
$$T: \mathbb{F}^4 \to \mathbb{F}^4$$
,
 $T(x_1, x_2, x_3, x_4) = (x_2, 2x_3, 3x_4, 0).$

Remark

The grader and the Lecturer will be happy to help you with the homework. Please visit office hours.

Good luck!