Math 491 - Linear Algebra II, Spring 2016

Homework 2 - Rings

Quiz on 2/9/16 with Review Test

Remark: Answers should be written in the following format: A) Result.

B) If possible, the name of the method you used.

C) The computation.

- 1. **Degree of a polynomial.** Let \mathbb{F} be a field and $\mathbb{F}[X]$ the ring of polynomials with coefficients in \mathbb{F} .
 - (a) Show that dim $\mathbb{F}[X] = \infty$.
 - (b) Now let *R* be a ring and *R*[*X*] the ring of polynomials with coefficients in *R*. Recall that the degree deg(*f*) of a polynomial $f \in R[X]$ is defined to be deg(*f*) = *d* if $f = a_d X^d + ... + a_1 X + a_0$ and $a_d \neq 0$, and deg(*f*) = $-\infty$ if f = 0. Show that for every $f, g \in R[X]$ we have
 - (i) $\deg(fg) \le \deg(f) + \deg(g)$,
 - (ii) $\deg(f+g) \le \max\{\deg(f), \deg(g)\}.$

Moreover, show that if *R* is an integral domain than the inequality in (i) is actually an equality.

- 2. Kernel of a homomorphism. Let $\varphi : R \to S$ be homomorphism of rings. Define the <u>kernel</u> of φ , denoted ker(φ), by ker(φ) = { $a \in R$ such that $\varphi(a) = 0$ }. Show that φ is one-to-one if and only if ker(φ) = {0}.
- 3. Uniqueness of inverses. Show that if *R* is a ring with unit and $a \in R$ is invertible, i.e., there exists $b \in R$ such that $ab = ba = 1_R$, then it has a unique inverse.
- 4. Subrings from ring homomorphisms. Let $\varphi : R \to S$ be a homomorphism of rings. We define the image of φ , denoted Im(φ), by Im(φ) = { $\varphi(r) | r \in R$ }. Show that Im(φ) is a subring of *S* and that ker(φ) is a subring of *R*.
- 5. Kernel is an ideal. Let *R* be a ring. A subset $I \subset R$ is called an <u>ideal</u> of *R* if *I* satisfies

(i) $0_R \in I$

- (ii) for all $a, b \in I$, we have $a + b \in I$
- (iii) for all $a \in I$, we have $-a \in I$
- (iv) for all $a \in I$ and $r \in R$ we have $r \cdot a \in I$
- (v) for all $a \in I$ and $r \in R$ we have $a \cdot r \in I$

Now, let $\varphi : R \to S$ be a homomorphism of rings. Show that ker(φ) $\subset R$ is an ideal of *R*.

- 6. **Inverse of a Homomorphism.** Let $\varphi : R \to S$ be a homomorphism of rings. We say that φ is <u>invertible</u> if there exists a ring homomorphism $\sigma : S \to R$ such that $\sigma \circ \varphi = id_R$ and $\varphi \circ \sigma = id_S$. Show that the following are equivalent:
 - (i) φ is invertible
 - (ii) φ is one-to-one and onto

Hint for (ii) implies (i): Note that $\varphi^{-1} : S \to R$ exists. Show that φ^{-1} is a homomorphism of rings.

7. **Division Algorithm.** Let \mathbb{F} be a field. Recall from class, if $f, g \in \mathbb{F}[X]$ then there exists unique polynomials $q, r \in \mathbb{F}[X]$ with $0 \leq \deg(r) < \deg(g)$ such that

$$f = qg + r.$$

Find *q*, *r* in the following cases.

- (i) Let $\mathbb{F} = \mathbb{F}_7$, the field with 7 elements, and take $g = X^3 + X + 1$, $f = X^5 + 2X^4 3X^3 + X^2 1$.
- (ii) Let $\mathbb{F} = \mathbb{F}_2$, the field with 2 elements, and take g = X + 1, $f = X^3 + X$.
- 8. **Ring homomorphisms and Inverses.** Let *R*, *S* be rings with unit. Let $\varphi : R \to S$ be a homomorphism of rings with unit, that is $\varphi(1_R) = 1_S$. Recall that $R^{\times} = \{a \in R \mid a \text{ is invertible}\}$. Show that for every $a \in R^{\times}$, we have $\varphi(a) \in S^{\times}$. That is, φ maps invertible elements to invertible elements.
- 9. Ideals in Polynomial Rings. Let \mathbb{F} be a field and $R = \mathbb{F}[X]$. Decide whether or not the following subsets of *R* are ideals.

(a)
$$\{f \in R \mid \deg(f) < m\} \cup \{0\}$$

- (b) $\{f \in R \mid \deg(f) > m\} \cup \{0\}.$
- (c) $\{f = \sum a_i X^i \mid a_0 = 0\}.$
- (d) $\{f \in R \mid f(1) = 0\}.$
- (e) $\{f \in R \mid f(0) = 0\}.$
- (f) $\{f \in R \mid f(0) = f(1)\}.$

(g)
$$\{f \in R \mid f(0) = f(1) = 0\}.$$

Remark

The grader and the Lecturer will be happy to help you with the homework. Please visit office hours.

Good luck!