Math 491 - Linear Algebra II, Fall 2015

Homework 2 - Rings and Things

Quiz on 2/19/15

Remark: Answers should be written in the following format:

- A) Result.
- B) If possible, the name of the method you used.
- C) The computation.
 - 1. **Subrings from ring homomorphisms.** Let $\phi : R \to S$ be a homomorphism of rings. We define the image of ϕ , denoted $\text{Im}(\phi)$, by $\text{Im}(\phi) = \{\phi(r) \mid r \in R\}$. Show that $\text{Im}(\phi)$ is a subring of S and that $\text{ker}(\phi)$ is a subring of R.
 - 2. **Kernel is an ideal.** Let *R* be a ring. A subset $I \subset R$ is called an <u>ideal</u> of *R* if *I* satisfies
 - (i) $0_R \in I$
 - (ii) for all $a, b \in I$, we have $a + b \in I$
 - (iii) for all $a \in I$, we have $-a \in I$
 - (iv) for all $a \in I$ and $r \in R$ we have $r \cdot a \in I$
 - (v) for all $a \in I$ and $r \in R$ we have $a \cdot r \in I$

Now, let $\phi : R \to S$ be a homomorphism of rings. Show that $\ker(\phi) \subset R$ is an ideal of R.

- 3. **Inverse of a Homomorphism.** Let $\phi: R \to S$ be a homomorphism of rings. We say that ϕ is <u>invertible</u> if there exists a ring homomorphism $\sigma: S \to R$ such that $\sigma \circ \phi = id_R$ and $\phi \circ \sigma = id_S$. Show that the following are equivalent:
 - (i) ϕ is invertible
 - (ii) ϕ is one-to-one and onto

Hint for (*ii*) implies (*i*): Note that $\phi^{-1}: S \to R$ exists. Show that ϕ^{-1} is a homomorphism of rings.

4. **Division Algorithm.** Let \mathbb{F} be a field. Recall, if $f,g \in \mathbb{F}[X]$ then there exists unique polynomials $q,r \in \mathbb{F}[X]$ with $0 \leq \deg(r) < \deg(g)$ such that

$$f = qg + r$$
.

Find q, r in the following cases.

- (i) Let $\mathbb{F} = \mathbb{F}_7$, the field with 7 elements, and take $g = X^3 + X + 1$, $f = X^5 + 2X^4 3X^3 + X^2 1$.
- (ii) Let $\mathbb{F} = \mathbb{F}_2$, the field with 2 elements, and take g = X + 1, $f = X^3 + X$.
- 5. **Unitary Ring homomorphisms and Inverses.** Let R, S be rings with unit. Let ϕ : $R \to S$ be a homomorphism of rings with unit, that is $\phi(1_R) = 1_S$. Recall that $R^\times = \{a \in R \mid a \text{ is invertible}\}$. Show that for every $a \in R^\times$, we have $\phi(a) \in S^\times$. That is, ϕ maps invertible elements to invertible elements.
- 6. **Ideals in Polynomial Rings.** Let \mathbb{F} be a field and $R = \mathbb{F}[X]$. Decide whether or not the following subsets of R are ideals.
 - (a) $\{ f \in R \mid \deg(f) < m \} \cup \{ 0 \}$
 - (b) $\{f \in R \mid \deg(f) > m\} \cup \{0\}$
 - (c) $\{f = \sum a_i X^i \mid a_0 = 0\}$
 - (d) $\{f \in R \mid f(1) = 0\}$
 - (e) $\{f \in R \mid f(0) = 0\}$
 - (f) $\{f \in R \mid f(0) = f(1)\}$
 - (g) $\{ f \in R \mid f(0) = f(1) = 0 \}$

Remark

The grader and the Lecturer will be happy to help you with the homework. Please visit office hours.

Good luck!