Math 491 - Linear Algebra II, Fall 2016

Homework 10 - Orthogonal Projection and Unitary Operators

Quiz on 4/26/16

Remark: Answers should be written in the following format:

- A) Result.
- B) If possible, the name of the method you used.
- C) The computation or proof.
 - 1. We know (exercise 3 below) that a complex $n \times n$ matrix A is <u>unitary</u> if and only if $A^*A = I$. Here A^* denotes the conjugate transpose of A. Show that the following are equivalent.
 - (i) A is unitary.
 - (ii) The columns of A are an orthonormal basis of \mathbb{C}^n .
 - (iii) The rows of A are an orthonormal basis of \mathbb{C}^n .
 - 2. Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space. Let S and T be two linear operators on V, and $\alpha \in \mathbb{F}$. Show the following.
 - (a) $(S+T)^* = S^* + T^*$;
 - (b) $(\alpha T)^* = \bar{\alpha} T^*$;
 - (c) $(S \circ T)^* = T^* \circ S^*$;
 - 3. Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space. Let $T: V \to V$ be a linear transformation. Show that the following are equivalent.
 - (a) $T^*T = Id_V$;
 - (b) $TT^* = Id_V$;
 - (c) *T* sends every orthonormal basis to an orthonormal basis;
 - (d) *T* sends some orthonormal basis to an orthonormal basis;
 - (e) *T* preserves $\langle \cdot, \cdot \rangle$;
 - (f) T preserves $||\cdot||$;

- (g) T preserves distance;
- 4. We know (exercise 3 above) that a real square matrix A is <u>orthogonal</u> if and only if $AA^T = I$.
 - (a) Show that if *A* is orthogonal then $det(A) = \pm 1$.
 - (b) Classify all 2 \times 2 orthogonal matrices by showing for an orthogonal 2 \times 2 real matrix A that
 - (i) if $\det(A) = 1$ then the transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T_A(v) = Av$ is a rotation;
 - (ii) if det(A) = -1 then the transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T_A(v) = Av$ is a reflection across a line L through the origin.