Math 491 - Linear Algebra II, Spring 2016

Homework 1 - Warm-up

Due: 2/2/16

Remark: Answers should be written in the following format: A) Result.

B) If possible, the name of the method you used.

C) The computation or proof.

- 1. **The Change of Basis Matrix.** Let *V* be an *n*-dimensional vector space over a field **F**.
	- (a) Recall the definition of a basis of *V* and the coordinate map induced by a basis.
	- (b) Suppose B and C are two bases for *V*. Show that there exists a unique matrix $M_{\mathcal{C},\mathcal{B}} \in M_n(\mathbb{F})$ such that, for every $v \in V$,

$$
[v]_{\mathcal{C}}=M_{\mathcal{C},\mathcal{B}}[v]_{\mathcal{B}}.
$$

Let $\mathcal{B} = \{v_1, \ldots, v_n\}$. Show that the matrix $M_{\mathcal{C},\mathcal{B}}$ has the formula

$$
M_{\mathcal{C},\mathcal{B}}=\left([v_1]_{\mathcal{C}}\cdot\cdots\cdot[v_n]_{\mathcal{C}}\right).
$$

- (c) Let $V = \mathbb{R}_{\leq 2}[x]$ be the vector space of polynomials of degree at most two with coefficients in \mathbb{R} . Let $\mathcal{B} = \{1, x, x^2\}$ and $\mathcal{C} = \{1 - x, 1 + x, 1 + x^2\}$ be two bases of *V*. Compute $M_{\mathcal{C},\mathcal{B}}$ and $M_{\mathcal{B},\mathcal{C}}$.
- 2. **The Matrix of a Linear Transformation.** Let *V* be an *n*-dimensional vector space over a field **F**.
	- (a) Recall the definition of a linear transformation $T: V \to V$.
	- (b) Let $T: V \to V$ be a linear transformation. Show that there exists a unique matrix $[T]_B \in M_n(\mathbb{F})$ such that for all $v \in V$

$$
[T(v)]_{\mathcal{B}} = [T]_{\mathcal{B}}[v]_{\mathcal{B}}.
$$

Moreover, show that the matrix $[T]_B$ has the formula

$$
[T]_{\mathcal{B}} = \left([T(v_1)]_{\mathcal{B}} \cdot \cdots \cdot [T(v_n)]_{\mathcal{B}} \right).
$$

(c) Let B and C be two bases of *V*. Show that

$$
[T]_{\mathcal{C}} = M_{\mathcal{C},\mathcal{B}}[T]_{\mathcal{B}}M_{\mathcal{B},\mathcal{C}}.
$$

(d) Let $V = \mathbb{R}_{\leq 2}[x]$. Let $T: V \to V$ be given by the equation

$$
T(p(x)) = (xp(x))'.
$$

Compute $[T]_B$ and $[T]_C$ where $B = \{1, x, x^2\}$ and $C = \{1 - x, 1 + x, 1 + x^2\}.$

- 3. **Direct sum.** We say that a vector space *V* is a direct sum of the subspaces $V_1, \ldots, V_k \subset$ *V*, and denote $V = V_1 \oplus \cdots \oplus V_k$, if every $v \in V$ can be written uniquely as $v = v_1 + \cdots + v_k$, where $v_i \in V_i$ for every $i = 1, \ldots, k$.
	- (a) Suppose *V* is a finite dimensional vector space and $V_1, \ldots, V_k \subset V$ are subspaces. Show that the following are equivalent:
		- 1. $V = V_1 \oplus \cdots \oplus V_k$.
		- 2. For every collection of bases \mathcal{B}_1 for V_1 , ..., \mathcal{B}_k for V_k , their union $\mathcal{B} = \mathcal{B}_1 \cup$ · · · ∪ B*^k* is a basis for *V*.
	- (b) (i) Let $V = F(\mathbb{R})$ be the vector space of functions on \mathbb{R} . Show that *V* is the direct sum of the subspaces generated by odd and even functions.
		- (ii) Let $V = M_n(\mathbb{F})$ be the vector space of $n \times n$ matrices over **F**. Show that *V* is the direct sum of the subspaces generated by symmetric and antisymmetric matrices.
- 4. **Eigenvales and eigenvectors.** Let $T: V \rightarrow V$ be a linear transformation.
	- (a) Recall the definition of eigenvectors and eigenvalues.
	- (b) Show that if $v_1, \ldots, v_k \in V$ are eigenvectors of *T* associated with different eigenvalues $\lambda_1,\ldots,\lambda_k$, then they are linearly independent.
- 5. **Diagonalization** Let *V* be an *n*-dimensional vector space over **F**. Let $T: V \rightarrow V$ be a linear transformation. Show that the following are equivalent:
	- 1. There exists a basis $B = \{v_1, \ldots, v_n\}$ for *V* such that

$$
[T]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & & & \\ & \cdot & & \\ & & \cdot & \\ & & & \lambda_n \end{pmatrix}.
$$

2. There exists $\mu_1, \ldots, \mu_k \in \mathbb{F}$ and subspaces V_1, \ldots, V_k of *V*, such that $V = V_1 \oplus$ $\cdots \oplus V_k$, and for each $i = 1, \ldots, k$ the action of T on V_i is given by multiplication by μ_i .

Remark

The lecturer and grader will be happy to help you with the homework. Please attend their office hours.