Math 340 Spring 2014 Practice for Mid-Term Exam

This is a multiple choice exam. Circle the letter or number corresponding to the correct answer.

1. (25 pts) Let

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & -1 \\ 2 & -1 & 1 \\ 0 & 2 & -3 \end{pmatrix}.$$

Mark the matrix below that can be filled in to form $B^{-1}AB$

(a)
$$\begin{pmatrix} * & -1/2 & -1 \\ * & 12 & -15 \\ * & 8 & -10 \end{pmatrix}$$
.
(b) $\begin{pmatrix} * & 1/2 & -1 \\ * & 12 & -15 \\ * & 8 & -10 \end{pmatrix}$.
(c) $\begin{pmatrix} * & -1/2 & -1 \\ * & 12 & -2 \\ * & 8 & -10 \end{pmatrix}$.
(d) $\begin{pmatrix} * & 1/2 & -1 \\ * & 12 & -2 \\ * & 8 & -10 \end{pmatrix}$.

- 2. There are two parts to this problem!
 - (a) (20 pts) Consider the following system of equations:

$$S: \begin{cases} x+y+2z = 1; \\ 2x+y+5z = 3; \\ 4x+3y+9z = 5 \end{cases}$$

The set of solution Sol(S) is equal to:

1.
$$\left\{ \begin{pmatrix} 2\\3\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -3\\4\\1 \end{pmatrix}; t \in \mathbb{R} \right\}.$$

2.
$$\left\{ \begin{pmatrix} 2\\-1\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -3\\4\\1 \end{pmatrix}; t \in \mathbb{R} \right\}.$$

3.
$$\left\{ \begin{pmatrix} 2\\3\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -3\\1\\1 \end{pmatrix}; t \in \mathbb{R} \right\}.$$

•

4.
$$\left\{ \begin{pmatrix} 2\\-1\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -3\\1\\1 \end{pmatrix}; t \in \mathbb{R} \right\}$$

- (b) (5 pts) Select the correct geometric interpretation of the solution of this system of equations.
 - 1. Three parallel planes.
 - 2. Three planes intersecting at a line.
 - 3. A line through the origin.
 - 4. A point.
- 3. (25 pts) Let A be an $n \times n$ matrix. Consider the linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^n$, defined of course by $T_A(\mathbf{v}) = A \cdot \mathbf{v}$. Let $\operatorname{Im}(T_A) = \{T_A(\mathbf{v}); \mathbf{v} \in \mathbb{R}^n\}$. Which of the following is true:
 - (a) There exists a matrix A and vectors $\mathbf{u}, \mathbf{w} \in \text{Im}(T_A)$, such that $\mathbf{u} + \mathbf{w} \notin \text{Im}(T_A)$.
 - (b) There exists a matrix A such that $Im(T_A)$ is empty.
 - (c) For all matrices A, vectors $\mathbf{u}, \mathbf{w} \in \text{Im}(T_A)$, and $\alpha \in \mathbb{R}$, we have $\mathbf{u} + \mathbf{w} \in \text{Im}(T_A)$, and $\alpha \cdot \mathbf{u} \in \text{Im}(T_A)$.
 - (d) There exists a matrix A, a vector $\mathbf{u} \in \text{Im}(T_A)$, and $\alpha \in \mathbb{R}$ such that $\alpha \cdot \mathbf{u} \notin \text{Im}(T_A)$.
- 4. (25 pts) Let

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}.$$

For any invertible $C \in M_3(\mathbb{R})$ we have that $\det(CA^tC^{-1})$ is

- (a) -2.
- (b) 0.
- (c) 1.
- (d) 2.

Good Luck!