Math 340 Spring 2014 HW8, due week of April 21-25 Bases

Remark. Answers should be written in the following format: A) Result.

- B) If possible the name of the method you used.
- C) The computation.

Definitions. Let V be a vector space over \mathbb{R} .

- Define when a subset $S \subset V$ is linearly independent.
- Define when a subset $\mathcal{B} = \{v_{1,\dots}, v_n\} \subset V$ is a <u>basis</u> for V.
- Let $v \in V$ and suppose $\mathcal{B} = \{v_{1,\dots,}v_n\} \subset V$ is a basis for V. Define the <u>coordinate</u> $[v]_{\mathcal{B}} \in \mathbb{R}^n$, of v with respect to \mathcal{B} .
- Let $\mathcal{B} = \{v_{1,\dots,}v_n\}$ be a basis for V. Let $T: V \to V$ be a linear transformation. Define $[T]_{\mathcal{B}} \in M_n(\mathbb{R})$, called the matrix representing T with respect to \mathcal{B} .
- Define what it means for V to have dimension n, denoted by $\dim(V) = n$.

1. Basis and Coordinates

Let $V = \mathbb{R}^3$ and let

$$v = \begin{pmatrix} 3\\4\\1 \end{pmatrix}.$$

(a) Let

$$u_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, u_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, u_3 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}.$$

Show that $\mathcal{B} = \{u_1, u_2, u_3\}$ is a basis for V.

(b) Let

$$v_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, v_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, v_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

Show that $C = \{v_1, v_2, v_3\}$ is a basis for V.

(c) Compute the coordinate of v with respect to \mathcal{B} , i.e., $[v]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$, such that $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = v$.

(d) Compute the coordinate of v with respect to C, i.e., $[v]_{\mathcal{C}} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$, such that $\beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = v$.

$p_1v_1 + p_2v_2 + p_3v_3 = v.$

2. The Matrix of a Linear Transformation

We call a function $T : \mathbb{R}^n \to \mathbb{R}^n$ linear transformation if T(u+v) = T(u) + T(v) and $T(\alpha u) = \alpha T(u)$, for all $u, v \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.

Let

$$A = \left(\begin{array}{rrrr} 7 & -3 & -3\\ 10 & -4 & -7\\ 0 & 0 & 3 \end{array}\right).$$

Consider the linear transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$, given by $T_A(v) = Av$.

(a) Given a linear transformation T and a basis $\mathcal{B} = \{v_1, v_2, v_3\}$ we define the matrix of T with respect to \mathcal{B} in the following way:

$$[T]_{\mathcal{B}} = ([T(v_1)]_{\mathcal{B}}, [T(v_2)]_{\mathcal{B}}, [T(v_3)]_{\mathcal{B}})$$

So to compute the i^{th} column of the matrix we apply T to the i^{th} basis vector, and express the result in coordinates with respect to the basis \mathcal{B} . Let $\mathcal{E} = \{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 . Compute $[T_A]_{\mathcal{E}}$.

(b) Let

$$u_1 = \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 3\\ 5\\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 0\\ -1\\ 1 \end{pmatrix}.$$

Let $C = \{u_1, u_2, u_3\}$. Note that C is a basis for \mathbb{R}^3 . Compute $D = [T_A]_C$. Now let $C = (u_1, u_2, u_3)$. Note that C is a matrix, where as C is a basis. Show that $C^{-1}AC = D$.

3. Basis and Dimension

For the following subspaces, W, find a basis and compute the dimension of the subspace.

(a) The system

$$\begin{cases} x + 2y + 4z = 0\\ 3x - 5y + z = 0\\ x + 3y + 5z = 0 \end{cases}$$

and $W \subset \mathbb{R}^3$ is the set of solutions to the system above.

(b) The matrix

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 5 & 1 & -4 \\ -3 & -1 & 2 \end{pmatrix}$$

and $W = Ker(A) \subset \mathbb{R}^3$.

- (c) Let $V = \{ \text{Polynomials of degree at most } 3 \}$. Let $W = \{ p \in V | p'' = 0 \}$, where p'' denotes the second derivative of p.
- (d) The matrix

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix}$$

and $W_3 = \{ v \in R^3 | (A - 3I)v = 0 \}.$ $W_2 = \{ v \in R^3 | (A - 2I)v = 0 \}.$

Remarks

- You are very much encouraged to work with other students. However, submit your work alone.
- The TA and the Lecturer will be happy to help you with the homework. Please visit the office hours.

Good Luck!