Math 340 Spring 2014 HW5, due in discussion Feb. 24-28 2014 Inverse Matrices and Transformations

Remark. Answers (except for 1) should be written in the following format: A) Result.

- B) If possible the name of the method you used.
- C) The computation.

Definitions.

Let $f: X \to Y$ be a function.

- Define what it means for f to be <u>one-to-one</u>.
- Define what it means for f to be <u>onto</u>.
- Define what it means for f to be <u>invertible</u>.

1. Invertible Matrices and Invertible Transformations

Let A be an $n \times n$ matrix.

- (a) Show that if A is invertible then the transformation (function) T_A is invertible.
- (b) Show that if T_A is invertible then A is invertible (Hint: For every **y** there is an **x** such that $T_A(\mathbf{x}) = \mathbf{y}$. In addition, you can use the fact that if there is $B \in M_n$ such that $AB = I_n$ then A is invertible).
- (c) Suppose there exists a vector $\mathbf{v} \in Ker(A) = {\mathbf{x} \in \mathbb{R}^n | A\mathbf{x} = 0}$ that is not the zero vector. Show that A is not invertible.

2. The Inverse of a Product of Matrices

(a) Let

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 \\ 4 & -3 \end{pmatrix}$$

- 1. Compute A^{-1} and B^{-1} .
- 2. Compute $C = B^{-1}A^{-1}$.
- 3. Compute ABC.
- (b) Suppose A and B are invertible $n \times n$ matrices. Show that AB is invertible.
- (c) Suppose that AB is invertible. Show that A and B are invertible.

3. Inverting Matrices

Use the methods discussed in class (row reduction) to determine if the matrices below are invertible. If so, give the inverse.

(a)

$$A = \begin{pmatrix} -2 & 4 \\ 3 & 5 \end{pmatrix}.$$
(b)

$$B = \begin{pmatrix} 1 & 1 & -1 \\ 4 & 6 & -2 \\ 1 & 3 & 1 \end{pmatrix}.$$
(c)

$$C = \begin{pmatrix} 3 & 5 & 0 \\ 1 & 4 & 2 \\ 4 & -2 & 2 \end{pmatrix}.$$

4. Arithmetic Complexity of Inversion By Row Reduction

If we define one "operation" to be the addition, subtraction, multiplication, or division of two real numbers, for example 3 + 5 or 17/3, approximately how many operations, in terms of n, does our algorithm for inverting an $n \times n$ matrix require (Just give the degree of the polynomial, for instance if it takes $3n^5 + 2n^4 + 8$ operations, the answer is n^5). Justify your answer.

Remarks

- You are very much encouraged to work with other students. However, submit your work alone.
- The TA and the Lecturer will be happy to help you with the homework. Please visit the office hours.

Good Luck!