$\begin{array}{cc} \text{Math 121A} \quad \text{Spring 2007} \\ \text{Homework}\#4 \ \mathbb{C} \end{array}$

1. Compute

- (a) $(1+i)^2$, $(1-i)^{-1}$, $\frac{1+i}{1+2i}$.
- (b) Find the polar/standard representation of 1 + i, $2e^{\frac{i\pi}{4}}$, $(1 2i)^{-1}$.
- (c) Draw in the plane the sets $\{z \in \mathbb{C}; |z+1| = 1\}, \{z \in \mathbb{C}; \operatorname{Im}(z) = \operatorname{Re}(z)\}.$
- 2. Explain the geometric meaning of multiplication of two complex numbers and draw a picture in the plane (Clue: by De-Moivre's theorem $r_1e^{i\theta}$. $r_2e^{i\varphi} = r_1r_2e^{i(\theta+\varphi)}$).
- 3. Find all solutions in \mathbb{C} of the equations $z^2 + 4z + 5 = 0$.
- 4. Find all complex numbers that satisfy $z^4 = 1$. Draw the results in the plane (Clue: De-Moivre's theorem).
- 5. Recall the definition $e^{i\theta} = \cos \theta + i \sin \theta$. What trigonometric formulas you get from equating both sides of the identity $e^{i\theta} \cdot e^{i\varphi} = e^{i(\theta + \varphi)}$?

• Remarks

- You are very much encouraged to work with other students. However, submit your work alone.
- I will be happy to help you with the homeworks. Please visit me if you want to work with me.

Good Luck!