Math 121A Spring 2007 Homework#3 Linear Algebra

- 1. Consider the vector space $V = \mathbb{R}^2$ and the basis $\mathcal{B} = \{(1,1), (1,2)\}$ and $\mathcal{C} = \{(1,0), (1,1)\}$. Compute the transition matrix $T = T_{\mathcal{C},\mathcal{B}}$. Suppose $v \in V$ with $[v]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Compute $[v]_{\mathcal{C}}$.
- 2. Consider the vector space $V = \{ax^2 + bx + c; a, b, c \in \mathbb{R}\}$ of all the polynomial of degree ≤ 2 . Consider the linear operator $L : V \to V$ given by $L = \partial^2 + \partial + I$. For example $L(x^2) = x^2 + 2x + 2$. Compute det(L) and Tr(L) (Clue: det and Tr of an operator are independent of any choice of a basis).
- 3. Compute eigenvalues and eigenvectors for the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and find a matrix B such that $BAB^{-1} = D$ diagonal.
- 4. Compute

$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^{29}.$$

(Clue: Problem 3).

- 5. * (Student's question from office hour) Consider the vector space $V = \mathbb{R}^2$ and let $R_{\theta}: V \to V$ be the transformation of rotation of the plane by angle θ around 0.
 - (a) Show that R_{θ} is linear.
 - (b) Consider the standard basis $\mathcal{B} = \{(1,0), (0,1)\}$ of V. Compute the matrix $[R_{\theta}]_{\mathcal{B}}$. Compute its determinant.
 - (c) Consider the standard inner-product $\langle u, v \rangle$ on V. Show that it is invariant under the transformation R_{θ} , i.e., show that for any two vectors $u, v \in V$ we have $\langle R_{\theta}u, R_{\theta}v \rangle = \langle u, v \rangle$ (Clue: use the fact that $\langle u, v \rangle = \cos \alpha(u, v) \cdot ||u|| ||v||$, where $\alpha(u, v)$ is the angle between u and v, and ||u|| denote the length of u).

• Remarks

- You are very much encouraged to work with other students. However, submit your work alone.
- I will be happy to help you with the homeworks. Please visit me if you want to work with me.

Good Luck!