Math 121A Spring 2009 Homework#10 DFT and Motions of the Plane

- 1. Discrete Fourier transform.
 - (a) For a function $f : \mathbb{Z}_N \to \mathbb{C}$ define its Fourier transform $\widehat{f} : \mathbb{Z}_N \to \mathbb{C}$.
 - (b) For two function $f, g: \mathbb{Z}_N \to \mathbb{C}$ define the convolution $f * g: \mathbb{Z}_N \to \mathbb{C}$ and prove the identity $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$. Clue: $\{\delta_a\}$.
 - (c) Suppose A and B are two polynomials of degree d. Explain how to compute the multiplication C = AB in a approximately $N \log(N)$ operations, where N = 2d. You should assume the Cooley-Tukey FFT algorithm.
- 2. The group of motions of the plane.
 - (a) Define when a map $m : \mathbb{R}^2 \to \mathbb{R}^2$ is called a *motion*. Write down the classification theorem for the group M of all motion of the plane.
 - (b) Let l_1 and l_2 be two lines in the plane which intersect in one point $p = l_1 \cap l_2$ and with angle α between them. Compute explicitly the motion $m = r_{l_2} \circ r_{l_1}$ (Clue: Use the classification theorem).
 - (c) Define when a linear map $A : \mathbb{R}^2 \to \mathbb{R}^2$ is called *orthogonal*. Show that the set O_2 of all the orthogonal maps is a subgroup of M. Show that $\det(A) = \pm 1$ for every $A \in O_2$. Show that if $A \in O_2$ then A is a rotation R_θ or rotation composed with the standard reflection $r : (x, y) \mapsto (x, -y)$.

• Remarks

- You are very much encouraged to work with other students. However, submit your work alone.
- I will be happy to help you with the homeworks. Please visit me if you want to work with me.

Good luck!