Math 113 Spring 2007 HW#5: Subgroups.

- 1. For each of the following decide if it is a subgroup.
 - (a) The subset $H \subset S_5 = Aut(\{1, ..., 5\})$ with $H = \{\sigma \in S_5; \sigma(1) = 1\}$.
 - (b) The subset $\mathbb{R}^{\times} = \mathbb{R} \{0\}$ in $\mathbb{C}^{\times} = \mathbb{C} \{0\}$ with multiplication.
 - (c) The subset of positive real numbers in \mathbb{R}^{\times} with multiplication.
 - (d) The subset $\mu_n = \{z \in \mathbb{C}^\times; z^n = 1\}$ in \mathbb{C}^\times .
 - (e) The subset $T \subset GL_2(\mathbb{R})$ with $T = \{ \begin{pmatrix} a \\ b \end{pmatrix}; ab \neq 0 \}.$
- 2. Let G be a group and X a set. An action of G on X is an assignment for every $g \in G$ and every $x \in X$ an element $g \cdot x \in X$ such that $(gg') \cdot x = g \cdot (g' \cdot x)$ and $1_G \cdot x = x$. Show that
 - (a) If G act on X then for every $g \in G$ the induced map $\alpha_g : X \to X$ given by $\alpha_g(x) = g \cdot x$ is a bijection.
 - (b) If G act on X then for every subset $Y \subset X$ the stabilizer $H = Stab_G(Y) = \{g \in G; g \cdot Y = Y\}$ (i.e., the set of all $g \in G$ with α_g restricted to Y is a bijection of Y) is a subgroup of G.
 - (c) Use the notion of stabilizer to show that the set $T = \{ \begin{pmatrix} a \\ b \end{pmatrix}; ab \neq 0 \} \subset GL_2(\mathbb{R})$ is a subgroup (Clue: $G = GL_2(\mathbb{R})$ with its diagonal action on $\mathbb{R}^2 \times \mathbb{R}^2$ via $g \cdot ((x,y),(x',y')) = (g \cdot (x,y),g \cdot (x',y'))$ and $Y = \{((x,0),(0,y')); x,y' \in \mathbb{R}\}$).
- 3. Let G be a group and consider the set $Z(G) = \{h \in G; hg = gh \text{ for every } g \in G\}$ called the *center* of G. Show that Z(G) is a subgroup of G.
- 4. Compute the center Z(G) for $G = S_3$ and for $G = SL_2(\mathbb{R}) = \{A \in GL_2(\mathbb{R}); \det(A) = 1\}$.
- 5. Is the set $\{\begin{pmatrix} a \\ 0 \end{pmatrix}; a \neq 0\}$ a group with matrix multiplication? Is it a subgroup of $GL_2(\mathbb{R})$?

• Remarks

- You are very much encouraged to work with other students. However, submit your work alone.
 - I will be happy to help you with the homeworks. Please visit me if you want to work with me.

Good Luck!