Math 110 Fall 2008 HW#2: Definition of a vector space and subspace

- 1. Do Exercises 10 14 on pages 14-15.
- 2. Let $F = \{0\}$ with operations + and \cdot defined by 0 + 0 = 0, $0 \cdot 0 = 0$. Now, assume that in the definition of a vector space we use this specific F. Show that any "vector space" V over F is trivial, i.e., $V = \{0_V\}$.
- 3. Let V and W be vector space over a field F. Define a new set $V \times W = \{(v, w); v \in V, w \in W\}$. Show that with the operations (v, w) + (v', w') = (v + v', w + w') and $\alpha(v, w) = (\alpha v, \alpha w)$, and $0_{V \times W} = (0_V, 0_W)$, we have that $V \times W$ is a vector space over F.
- 4. Let V be a vector space over F and $W \subset V$ a subset. Show that W is a vector space over F (with the operations + and multiplication by scalars on V) if and only if the following conditions hold: $0_V \in W$, $w_1 + w_2 \in W$ for every $w_1, w_2 \in W$, $\alpha w \in W$ for every $\alpha \in F$ and $w \in W$.
- 5. Let V, W be vector spaces over a field F. Show that $V \cap W$ is a subspace of V.
- **Remark** You are very much encouraged to work with other students. However, submit your work alone.

Good Luck!!