Math 104, Spring 09

Homework#8: Series and continues functions

- 1. Let $A(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with radios of convergence R = 2. Assume in addition that $a_1 \ge a_2 \ge \dots \longrightarrow 0$. Show that A(z) converge for every z with |z| = 2 except possibly for z = 2.
- 2. Consider the set of all absolutely convergent series $A = \{\sum_{n=0}^{\infty} a_n; \text{ such that } \sum_{n=0}^{\infty} |a_n| < \infty\}$. Show that A is an algebra, i.e., it is closed under the following operations:
 - (a) Addition.
 - (b) Multiplication by a scalar.
 - (c) Multiplication. Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two elements of A. Define a new series $\sum_{n=0}^{\infty} c_n$ with $c_n = \sum_{k=0}^{n} a_n b_{n-k}$. You should prove that A is also a member of A (You can use the proof on page 74 of the book. Please try to explain in your answer what is the main point in the proof).
- 3. Write the graph of $f(x) = \frac{x^2-2}{x-2}$.
- 4. Recall the definition of the limit of a function $f: X \to Y$ where (X, d_X) and (Y, d_Y) are two metric spaces.
- 5. (Alternative definition of a limit in terms of sequences). Let $f: X \to Y$ be a function between two metric spaces. Show that $\lim_{x \to x'} f(x') = y'$ if and only if for every sequence $(x_n) \subset X$ with $x_n \to x'$ we have $f(x_n) \to y'$.
- 6. Let X be a metric space. Use 5. to show that the set $A = \{f : X \to \mathbb{C}; \text{ such that } f \text{ is continuos}\}$ is an algebra with the addition, multiplication by a scalar, and multiplication are defined by $(f + g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x)$ for every $\alpha \in \mathbb{C}$ and finally $(f \cdot g)(x) = f(x)g(x)$ for every $f, g \in A$.

Good luck!!