Math 104, Spring 09 Homework#7: Series and power series

1. Proof that the series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverge.

2. We defined the number
$$e = \sum_{n=1}^{\infty} \frac{1}{n}$$
. Show (you can use the book) that $\left(1 + \frac{1}{n}\right)^n \to e$ as $n \to \infty$.

- 3. Proof the following theorem: Let $\sum_{n=0}^{\infty} a_n z^n$ be a formal power series with $a_n \in \mathbb{C}$. Denote by $\alpha = \limsup |\frac{a_{n+1}}{a_n}|$ and by $R = \frac{1}{\alpha}$ (with the conventions $\alpha = 0$ then $R = \infty$ and $\alpha = \infty$ then R = 0). Then $\sum_{n=0}^{\infty} a_n z^n$ converge if |Z| < R and diverge for |Z| < R.
- 4. Consider the formal power series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$. Show that for every complex number $z \in \mathbb{C}$ this power series absolutely converge. We will denote that number by e^z . Show that
 - (a) For every $z, w \in \mathbb{C}$ we have the identity $e^{z+w} = e^z \cdot e^w$. This is called De-Moivre's theorem and believe it or not it is deep. Pay attention in your proof where you use the fact that the series e^z is absolutely convergence. The nice thing about absolutely convergent series is that you can organize its terms as you wish and still the series will converge to the same number.
 - (b) Show that for a real number θ one has $e^{i\theta} = \cos(\theta) + i\sin(\theta)$. Probably you want to recall the identity $\cos(\theta) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$ and $\sin(\theta) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$. This is known as Euler's theorem.
 - (c) Find using D-M's and Euler's theorems the formulas for $\sin(\theta + \varphi) = ?$ and $\cos(\theta + \varphi) = ?$.
- 5. Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converge only conditionally. What theorem you use?

6. Show that the power series $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converge for every $|z| \le 1$. What happens if |Z| > 1?

Good luck!!