Math 104, Spring 09 Homework#:4 Sequences

- 1. Show using only the definition that
 - (a) $\frac{1}{n+1} \to 0$, as $n \to \infty$.
 - (b) $\frac{1}{n^2} \to 0$, as $n \to \infty$.
 - (c) $1 + (-1)^n$ diverge as $n \to \infty$.
- 2. Suppose (a_n) and (b_n) are sequences of complex or real numbers. Assume that $a_n \to a$ and $b_n \to b$. Show using the definition of convergence that
 - (a) The sequence $(a_n + b_n)$ converge to a + b.
 - (b) If α is a fixed number then the sequence $(\alpha \cdot a_n)$ converge to $\alpha \cdot a$.
- 3. Problems 2, 3, page 78 in the book.
- 4. Prove from the definition that for $\alpha > 0$, $\frac{1}{n^{\alpha}} \to 0$ as $n \to \infty$.
- 5. Prove the binomial theorem $(a+b)^n = \dots$ (You should also write the correct statement).
- 6. In class we proved that for every real number $x \ge 1$ $\sqrt[n]{x} \to 1$ as $n \to \infty$. Prove this also in the case 0 < x < 1.

Good luck!!