Math 104, Fall 07 Homework#1: \mathbb{Q} , \mathbb{R} , and \mathbb{C}

- 1. Show that $\sqrt{3} \notin \mathbb{Q}$.
- 2. Let (S, <) be an ordered set and $E \subset S$ a set which is bounded below. Define the <u>infimum</u> α of E which is denoted by $\alpha = \inf E$. Show that there exist at most one such α .
- 3. Read the section "Fields", pages 5-8 in Rudin's book, and submit a proof of Proposition 1.18.
- 4. Recall that if x is a positive real number and n is a positive integer then there exist a unique positive real number y with $y^n = x$. The number y will be denoted by $\sqrt[n]{x}$. Show that if a and b are two positive real numbers and n is a positive integer then $\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$. (Clue: the uniqueness of the n'th root).
- 5. Proof by induction on n that $|z_1 + ... + z_n| \leq |z_1| + ... + |z_n|$ for $z_{1,...,z_n} \in \mathbb{C}$. (Assume that the case n = 2 was proved in class).
- 6. Solve problem 14 on page 23 of Rudin's book. (Clue: $|z|^2 = z \cdot \overline{z}$).

Good luck!!