Math 104, Fall 07

Homework#12: Taylor's theorem, integration

- 1. Use Taylor's theorem to compute $\sqrt[3]{90}$ with approximation which is better then 0.001.
- 2. Compute, using only the definition of integral using Riemann sums, the integral $\int_{-1}^{1} x^2 dx$.
- 3. Prove the theorem on change of variable in integration. **Theorem:** suppose $g : [A.B] \to [a,b]$ a bijection with g'(x) > 0 for every $x \in (a,b)$. Suppose $f : [a,b] \to \mathbb{R}$ integrable. Then $\int_{A}^{B} f(g(x))g'(x)dx = \int_{a}^{b} (f(u)du.$
- 4. Consider the function on [-2, 2] given by $f(t) = e^{t^2}$. Use the primitive function theorem to find a primitive F of f on [-2, 2]. Compute F'(0).

5. Compute
$$F'(x)$$
 where $F(x) = \int_{0}^{\sin x} \cos(t) dt$

- 6. Compute $\int_{0}^{1} x^2 e^x dx$. Explain the theoretical theorems that you use in order to do the computations. Explain why the conditions hold true so that you are allowed to use the theorems.
- 7. Recall the chain rule and use it to prove the integration by part theorem.
- 8. Show that if f, g are integrable on [a, b] so does there multiplication $f \cdot g$.

Good luck!!