Math 104, Fall 07

Homework#11: Connectedness, differentiation

- 1. State and prove the theorem that a continuos function maps connected set to a connected set (Theorem 4.22 on page 93 of the book).
- 2. Let $I = [a, b] \subset \mathbb{R}$ be a closed interval with a < b. Consider a continuos function $f: I \to I$. Show that there exist a point $x \in I$ such that f(x) = x. (Clue: Cauchy's mean value theorem).
- 3. Consider two differentiable (has a derivative at every point) functions $f, g : \mathbb{R} \to \mathbb{R}$. Show that (fg)'(x) = f'(x)g(x) + f(x)g'(x) for every $x \in \mathbb{R}$. In addition, if $g(x) \neq 0$ then $(\frac{f}{g})'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$.
- 4. Use the Lagrange mean value theorem: $\frac{f(b)-f(a)}{b-a}=f'(c)$ for some $a \leq c \leq b$ to compute approximation of $\sqrt{27}$.

Good luck!!