
Math 635 Introduction to Stochastic Calculus, Spring 2014
Homework 2

Due 3 PM on Monday, Feb. 17.

1. Suppose X ∈ L2(P ), in others words that E[X2] < ∞. Show that
E(X | G) is the best approximation of X in the mean square sense, among
all G-measurable square-integrable random variables. In other words, show
that

E
[
(X − Y )2

]
≥ E

[(
X − E(X | G)

)2]
for every G-measurable Y ∈ L2(P ). Hint: Begin with the left hand side, add
and subtract E(X | G) inside the square. Don’t worry about the L2(P ) mem-
bership assumptions. Those are just made to guarantee that expectations of
squares are finite.

2. Suppose Bt is a standard Brownian motion on some probability space.
Let Yt = Ba+t −Ba for some fixed (nonrandom) a > 0.

(a) Check that Yt is a standard Brownian motion.
(b) Check that {Yt : t ≥ 0} is independent of {Bt : t ∈ [0, a]}. Hint:

Some measure-theoretic technicalities (something called the π-λ Theorem,
you can take this step for granted) reduce this to checking that, for any
0 ≤ s1 < · · · < sm ≤ a and 0 ≤ t1 < · · · < tn < ∞, the finite-dimensional
vectors (Bs1 , . . . , Bsm) and (Yt1 , . . . , Ytn) are independent. You can do this
for example by checking that the characteristic function splits into a product:

E
[
ei

∑m
k=1 αkBsk

+i
∑n

j=1 θjYtj
]

= E
[
ei

∑m
k=1 αkBsk

]
· E
[
ei

∑n
j=1 θjYtj

]
for all αk, θj ∈ R.

3. From p. 41 in the book, exercises 3.3 (a), (b) and (d). In (d), assume
that the covariance matrix is nonsingular. Interpret the question as asking
for the conditional density of Y , given that X = x.

4. Let f be a continuous function on [0, b] and Bt standard Brownian
motion on some probability space (Ω,F , P ). Define

Y (ω) =

∫ b

0

f(t)Bt(ω) dt.



Identify the distribution of the random variable Y .
Hints: Calculate the characteristic function EeiθY . Since both f(t) and

Bt(ω) are continuous in t (consider only such ω) the integral can be written
as a limit of Riemann sums. Brownian increments are the most convenient
to work with, so try to write things in terms of increments.

5. Exercise 3.4 from p. 42 in the book. If you have never used the
moment generating function ψ(t) = EetX to calculate moments, observe
what happens when you differentiate repeatedly and then set t = 0. Do not
worry about justifying differentiation inside the expectation.

6. Exercise 4.6 from p. 59 in the book. To prepare for this, you might look
at how we applied a martingale to study the hitting time for random walk,
and then read Section 4.5 to see how similar things are done for Brownian
motion. That P (τ <∞) = 1 is in the book on p. 55 so you can take that for
granted. Do the exercise in three parts as follows. If you cannot do part (a),
assume the conclusion of part (a) and do as much as you can of the rest.

(a) Show that Bτ and τ are independent, and also

P (Bτ = A) = P (Bτ = −A) = 1/2.

This does not need a long proof, but there is a trick. Here is a hint. Let
Xt = −Bt, and define

σ = inf{t ≥ 0 : Xt = A or Xt = −A}.

Since Xt is again a standard Brownian motion, the pairs (Bτ , τ) and (Xσ, σ)
have the same distribution. Moreover, τ and σ are actually equal.

(b) Calculate φ(λ) by using the martingale.

(c) Find E(τ 2) from φ. You may run into a thicket of algebraic and
calculus details. If you persevere and get to the correct answer, it should be
5A4/3.


