BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS
AND RELATED FOURIER INTEGRAL OPERATORS

ANDREAS SEEGER STEPHEN WAINGER

1. Introduction

Let Q2 C Q be open sets in R?, I C R be an open neighborhood of the origin and let i be a compactly
supported smooth function on Q x I; we assume that 7(-,0) does not vanish identically. For each = € 2 let

t— I(z,t) C Q be a regular parametrization of a submanifold M, C Q with codimension ¢. We assume
that D(xz,t) C Qif (x,t) € supp 7, and that I satisfies I'(x,0) = x and depends smoothly on (z,t).

We shall consider the singular fractional integral operator (or weakly singular Radon transform) R,
defined by

(1) Ra () = [ a0 ()]~ de,

under suitable “curvature” assumptions on the singular support and the wavefront sets of the distribution
kernel of the integral operator.

To formulate these assumptions we shall work with a submanifold M of codimension ¢ in  x §; so
that

(1.2) A={(z,x):x €N} C M.

To relate this to the operator in (1.1) we assume that n(z,t) vanishes unless |¢| <  for small 6 and note
that the differential of the map (x,t) — 7(z,t) has maximal rank d + ¢; then we take

M=A{(z,y) 1z € Q,y =T(z,t) for some |t| < d}.

Moreover we assume the following standard hypotheses in the theory of Fourier integral operators:

Nondegeneracy assumptions.
(1.3) The natural projections (x,y) — x and (x,y) — y are submersions when restricted to M.

(1.4) The twisted normal bundle N*M' C T*Q x T*Q is locally the graph of a canonical transformation.
Here N*M' consists of all (x,€,y,—n) where (x,y) € M and (§,n) € T, )M annihilates the tangent
vectors in T(, ) M.

Assumption (1.3) implies that the sections

M, ={y€Q:(z,y) € M}
MY ={z € Q: (v,y) e M}
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are immersed submanifolds of 2, of codimension ¢. We may assume that M is given by a defining function

(1.5) M =A{(z,y) : ®(x,y) = 0}

where @ is R'-valued satisfying ®(z,z) = 0 so that (1.2) is satisfied and rank ®, = rank ®, = ¢ so that
(1.3) is satisfied.

Assumption (1.4) can be reformulated as follows. Let ¥(z,y,7) = 7-®(z,y). Then the assumption
(1.4) on N*M' is equivalent with

‘Ijzy ‘IIJ:T _ T'(I)zy (I)z {—1
(1.6) det(‘I/Ty wﬂ) —det< o, 0 ) #0 forallTe S,

see [12]; in (1.6) ®, should be read as a d x ¢ - matrix and ®, as an ¢ x d - matrix. For £ = 1 hypothesis
(1.4) is just the rotational curvature assumption of Phong and Stein [16]. We note that for (1.4) to hold
the codimension ¢ has to be sufficiently small, and we are mainly interested in the case of hypersurfaces.
Theorem 1.1. Suppose that1l < p < g < 00, 0 <o < d—{ and suppose that M satisfies the nondegeneracy
assumptions (1.3), (1.4). Then R, maps LP(Q) — L9(Q) if and only if the following conditions are
satisfied:

a) (1/p,1/q) belongs to the triangle with corners (0,0), (1,1) and (dLH, dL-;-E)'

b) (1/p,1/q) belongs to the halfplane defined by (d + 6)(% — %) <o.

A special translation invariant case is due to M. Christ [3], extending earlier results by Ricci and Stein
[18]. These authors consider the translation invariant case where ®(z,y) = x4 — yq — |2’ — y'|> and a
related model case on the Heisenberg group. For these dilation invariant examples one actually proves
global results which one could deduce from local ones by scaling arguments.

The weakly singular Radon transforms are special cases of oscillatory integrals with singular symbols
as considered by Melrose [13], Greenleaf and Uhlmann [11] and others. Let IP>~7 (2 x Q; M, A) denote the
class of distribution kernels introduced in [11]; we denote by Z#>~7(Q2 x Q; M, A) the associated class of
operators and refer for a general discussion and other references to previous work to [11].

Possibly after a change of variable we may locally parametrize M as a graph of an R’ valued function,
(1.7) y" = S(z,y)

with y' = (y1,..,¥a-0), ¥' = Wa—t+1,---,Ya), S = (Sa—r+1,...,Sa). so that

(1.8) rank Sy = ¢
and
0-Spryr S
(1.9) det <0~anyr S, ) #0

for all € R* \ {0}.

We recall from [11], [5] that a distribution kernel K belongs to 17~ 7 (2 x 2; M, A) if it is a locally
finite sum of K, so that each K, can be written after a change of variable in Q as an oscillatory integral

(110) //d YA eez[<T7y”7S(w7y’)>+<57$’7y’>]a(x7vav f)def
RI=E£xR

Here S satisfies (1.8), (1.9) and the symbol a satisfies the differential inequalities

(1.11) 107 ,0707 alx,y, 7, 1 < Cayp (L4 I + |71 (1 + Jg)) =717,
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We refer to the class of symbols satisfying (1.11) as S»~7(Q2 x Q,R*, R?~*). We shall sometimes denote
the operator with kernel (1.10) as 7 [a].

It is well known that the weakly singular Radon transform as considered in Theorem 1.1 is an operator
in Z%77(Q x Q; M, A) (see e.g. [11]). Namely after an appropriate localization it suffices to work with

(112 R(@) = [ 1S’ =y Sy )y
where x has small support. Then the distribution kernel is given by

5(y" = Sz, ¥ —y'|7 g(z,y")

where ¢ is the Dirac measure at the origin in R¢ and ¢ is smooth and compactly supported. We expand
the Dirac measure using the Fourier inversion formula in R® and apply the Fourier inversion formula in
R?~* to the function h — |h|7~ % *g(z, 2" + h). As a result we can write the distribution kernel in the form
(1.10) where the symbol a is given by

iy €) = 20) [ w7 g+ e

We now formulate estimates for general operators of class Z?°~9. Since the composition of a standard
pseudo-differential operator of order m with an operator in Z?>=7 (2 x Q; M, A) belongs to Z°P+™ =7 (2 x
Q; M, A) (see [5], [11]) the following results yield LZ — LI~ Sobolev estimates for weakly singular Radon
transforms.

a+m

Theorem 1.2. Suppose that 1 < p < q < oco. Let T € I~ 7(Q x Q; M, A), with compactly supported
distribution kernel, and assume that the nondegeneracy assumptions (1.3), (1.4) hold.

1.2.1. Suppose 0 < p < dTJ and 2p < o < d—{. Then T maps LP to L? if the following two conditions
are satisfied.

a) (1/p,1/q) belongs to the closed triangle with corners (325, 7%), ( p, d;ﬁ;p) and (

b) (1/p,1/q) belongs to the halfspace defined by (d—}—ﬁ)(; — %) <o-— 2p
1.2.2. Suppose p =0 and 0 < 0 < d— L. Then T maps LP to LY if the following two conditions are
satisfied.
a) (1/p,1/q) belongs to the closed triangle with corners (0,0), (1,1) and (di-i-e ﬁ), with the possible
exception of the points (0,0) and (1,1).
b) (1/p,1/q) belongs to the halfspace defined by (d—}—ﬁ)(% — %) <o.
Moreover, T is bounded from the Hardy space H* to L' and from L™ to BMO.

1.2.3. Suppose —€ < p < 0 and p t <o <d—{. Then T maps L? to LY if the following two conditions
are satisfied.

a) (1/p,1/q) belongs to the pentagon with corners (1,1), (0,0), (1, pTﬂ), (=,0) and (Z—;Z, g—fé), with

d_ﬂ)
A+l d+e)”

the possible exceptions of the points (1, pTﬂ), (=£,0).
b) (1/p,1/q) belongs to the halfspace defined by (d 6)( ) <o-—2p.
1.2.4. Suppose —€ < p < 0 and 0 < 0 < —pdTTZ. Then T maps LP to LT if (1/p,1/q) belongs to the
quadrilateral with corners (1,1), (0,0), (1, d;fﬁ) and (3%,0), with the possible exception of the points
(1, 43274) and (3%,0).

We remark that the analytic family of fractional integrals considered by Grafakos [9] in the translation
invariant case can be considered as a model family of operators of class Z°>~7, however the L? endpoint case
in this family belongs to 7=/~ but satisfies better L2 estimates than the general operator in 7“7 ¢4,
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Operators in Z%9 are bounded on L” for 1 < p < 00, see Greenleaf and Uhlmann [11], and for the main
special case of singular Radon transforms Phong and Stein [16], [17]. The endpoint L? — LP? estimates for
the case 2p = o, p, = (d — (- p)/(d —{) or p, = p/(d — () may fail as demonstrated by Christ [4]. It is
likely that the best possible Lorentz-space endpoint estimate, namely an LP» — LP»>2 bound holds; a proof
of this estimate in the translation-invariant case was given by Tao and one of the authors [20].

A variant of the methods in this paper has been used by the authors [21] to prove new L? theorems for
variable-coefficient maximal and singular integral operators associated to families of curves in R? (extending
results in [2], [19]).

It is well known that at least under the assumption of nonvanishing rotational curvature certain par-
abolic cutoffs can be used to write a singular integral along a hypersurface as a sum of two operators,
where one of them is a pseudodifferential operator of type (1/2,1/2) and the other one a Fourier integral
operator, of type (1/2,1/2). This decomposition is due to Melrose (see [13], [11]), but related arguments
had been used by Nagel, Stein and Wainger [15], see also Phong and Stein [17] for a different version. In
the course of this paper we shall make use of (variants of) all these decompositions.

The paper is organized as follows: §2 contains some preparations and the discussion of a crucial change
of variables. §3 contains preliminary estimates for dyadic pieces of fractional Radon transforms. After
appropriate localizations these are reduced to standard estimates for Fourier integral operators via parabolic
scalings. In §4 we consider some variants of fractional integrals which are relevant for the estimation of the
pseudodifferential contribution to operators in Z?>~% when p < 0. Here we shall also see that part 1.2.4
follows in a straightforward way from estimates for a class for certain product-type fractional integrals. In
85 we give the proof of Theorem 1.1. It turns out that after some changes of variables angular Littlewood-
Paley decompositions may be applied just as in the previously known translation-invariant case ([3]). As
in that case a positivity argument is crucial; however the estimates for the error terms are more involved.
In §5 we also bound a family of less singular positive operators which dominate operators in Z?>~? when
p < 0; thus we can then give a proof of 1.2.3. Finally, in §5, we discuss standard examples which show th
sharpness of the results. In §6 we establish L? — LP bounds by suitable interpolation between L? — L? and
Hardy-space estimates. §7 contains estimates for general operators in 7%~ and additional interpolation
arguments to finish the proof of Theorem 1.2.

2. Preliminaries

2.0. Notation.
2.0.1. B. will denote the open ball in R? of radius ¢ centered at the origin.

2.0.2. m(D) denotes the convolution operator with Fourier multiplier m(§). We split variables in
R = R x R® as z = (2/,2"”) and denote by h(D") the convolution operator with Fourier multiplier
h(¢£").

2.0.3. A function F on {z:0 < Re(z) < 1} is called of admissible growth if |F(z)| < Ce?l?l for some
A>0,C>0.

2.0.4. The differentiability inequalities (1.11) are supposed to hold for all multiindices of length < Mj
where My is large, say My = 10'°°d, those multiindices are termed admissible. Exponents IV, Ny, ..., N4 in
§4 and §7 are assumed to be > d + 1 and < 10'°d.

2.0.5. We denote by (o = wp an even C§°(R) function with (o(s) = 1 for |s| < 1/2 and (o(s) = 0 for
|s| > 1. Also let ((s) = (o(s/2) — (o(s), w(s) = wo(s/4) — wo(s) so that ¢ is supported in [1/2,2] and w is
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supported in [1/4,4]; moreover

Go(s) + Y8 =1
wo(s) + Zw(éfjs) =1

for all s € R.
2.0.6. For two quantities A and B we write A < B or B 2 A if there exists an absolute positive
constant C so that « < Cb. We write A ~ B if both A < B and A 2 B hold.

2.1 Standard assumptions. For our Fourier integrals (1.10) and for the weakly singular Radon trans-
forms any contribution away from the diagonal is handled by standard estimates for Fourier integral
operators, see Lemma 3.1 below. Therefore, in view of the compact support assumption on the kernel it
is sufficient to prove Theorems 1.1 and 1.2 under the assumption that the kernels of our operators are
supported in a small neighborhood of a given point (P, P) € A. We shall introduce coordinates that vanish
at P, and assume that in these coordinates the kernels are supported where |z|, |y| < '%; ¢ is chosen in
(2.16) below.

For further preparation choose g > 0 so that in a neighborhood of the closure of B, x B, the manifold
M is given as a graph

(2.1) y" = S(z,y);
by performing a linear transformation we can also assume that
(2.2) Sx/ (0, 0) = 0g7d_g

(the ¢ x (d — {) zero-matrix).
Since A C M we have

(2.3) 2" = S(x, ")
for all x € B., and consequently
(2.4) Sy (@, a") + Sy (z,2") =0

Szt (JC,JC’) + 2Szry/ (JC,JC’) + Syryr (33,33’) =0
Ser(w,3") = Ioy

where Iy o denotes the ¢ x ¢ identity matrix.

We shall also assume that for some constant Cy > 1

2.7) S sup 92,5y < Co.
|a\<10100d |z|<eo
- ly'[<eo

Moreover, by the assumption (1.9) and by (2.2) we have for some positive ¢y < 1
(2.8) 18-Sy (0,0)7H < 5

for all unit vectors # € S*1; here || - || denotes the Hilbert-Schmidt norm.
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2.2 Straightening near the diagonal.

We now introduce a family of changes of variables, depending on unit vectors u in R?~*

w e Qw;u) = (w',w" + F(w;u))

so that
(2.9.1) F'(0;u) =0
F(O;u) =

and so that
(2.10) y' =S(x,y) <= " =Sw ;)

if y=0Q(zu), z=Q(w;u)
and
(211) <u7vwl>§i(w7w’;u) :07 Z:d—€+177d

To describe this change of variables let B = B(u) be a rotation on R¢~¢ depending smoothly on u such
that Be; = u (with e; = (1,0,...,0)). We define an R’-valued function G = G(-;u) by requiring that G
satisfies the following system of ordinary differential equations, with respect to the variable w; and initial
data depending on the parameters ws, ..., wy:

oG

a—wl(w) = (u,Syr)(Bw',w" + G(’LU),BU)’)

G0, w2, ...,wg) =0

Set
F(w) = F(w;u) = G(B 'w',w"; u);

then F' satisfies (2.9) and
(2.12) (u, Vi ) F(w) = (u, Sy (w', w" + F(w),w")).
For the following discussion fix u. Since the functions S and S are related by (2.10) we have
(2.13) S(w,z") + F(z',S(w, 2)) = S(w',w" + F(w),z').
Denote by D, = (u, V) the directional derivative with respect to u. Differentiation of (2.13) yields
D,S(w,2") + D F(2',S(w,2)) + Fou (2, S(w, 2)) Dy S(w, 2) = (u, V,)S(w',w"” + F(w),z")
and by (2.12) we obtain

Dug(wvz’) + <U, Sy’ (Zlv g(wjz’) + F(zlv g(wvzl))v ZI)) + FZ”(Zlv g(wvzl))Dug(wv Z,)
= (u, Sy (W', w" + F(w),2")).

Now we evaluate for w = z and take into account that S(z,z') = z” . This yields

(I + F.(2))DyS(z,2') =0
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Since F..(0) = 0 by (2.9), we obtain (u,V.)S(z,2') = 0 in a neighborhood of (0,0), and since also
Sy (w,w'") + Sy (w,w") = 0 this yields (2.11).

In view of (2.9) we may fix a number §; < g¢ so that

(2.14) Bs/y C Q(w,u)Bs C Bys  for 6 < dy,w € Bs.
Let
(2.15) C,= sup sup |[Fw)|+C

|0]<10100d [w]<5;
where Cp is as in (2.7). We may assume throughout this paper that the cutoff function y in (1.12) satisfies
(2.16) supp X C {(z,¥) : |#| + |¥'| < €} where 0 < £ < (100dC} /co) ™ 0;.

Moreover the distribution kernels of the the Fourier integrals defined by (1.10) are assumed to be supported
in Bglo X Bglo.

Note also that for |z|, |y| < e

(2.17) 1Ser || + [|Ser — Ire]] < 7 < 6
(2.18) | Fu|| < €® < 01.

2.3. Adjoint operators. Suppose that M is given as a graph (1.7)with (1.8) and the symbol has small
(x,y) support then we may solve the equation y”’ = S(x,y’) in 2’ so that y"”" = S(z',S(y,z"),y") and

(2.19) y' — S’ 2" y") =Clx,y) (2" — 6y, y",2"))

in a neighborhood of M, with C(z,y) is an invertible ¢ x ¢ matrix depending smoothly on (z,y). If in
the oscillatory integral (1.10) we make a linear change in the 7-variables, 7 = C(xz,y)! 7, then we see that
(1.10) can be rewritten as a linear combination of integrals with phase function (7, 2" — &(y,z')). This
shows that for an operator in Z°>=7(Q2 x Q, M, A) the adjoint operator belongs to Z?"~7(Q x Q, M* A)
where M* = {(z,y) : (y,z) € M} (and M* satisfies (1.3), (1.4)).

3. Nonsingular Radon transforms and scaling

We first recall a well-known result on L? — L7 estimates for Fourier integral operators associated to a
canonical graph. These estimates take care of contributions of the kernels away from the diagonal. In the
formulation of this Lemma the order of a Fourier integral opertator is as in the standard theory of Fourier
integral operators; thus the standard Radon-type operators is of order —(d — ¢)/2.

d—¢
Lemma 3.1. Suppose —{ < p < *5=.

Let T be a Fourier integral operator of order p—% associated to a local canonical graph C C T*Q\{0} x
T*Q\ {0}. Suppose that the restrictions C of the projections (x,y) — x and (x,y) — y have differentials
with mazimal rank d and that the projection C — Q x Q has a differential with constant rank < 2d — (.
Suppose that the distribution kernel of T has compact support.

(i) If p > 0 then T maps LP to LY if (1/p,1/q) belongs to the closed triangle with corners (525, -25)

d—t—p d—t d ¢ mtramty
(=2, 572 and (55, 559)-
(i) If p = 0 then T maps LP to LY if (1/p,1/q) belongs to the closed triangle with corners (0,0),

(1,1) and (diH, d%;é), with the possible exception of the corners (0,0) and (1,1); then an H' — H' or

L*>® — BMQO bound holds.
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(iii) If —C < p < 0 then T maps LP to L? if (1/p,1/q) belongs to the pentagon with corners (1,1),

(0,0), (1, HTP), (#,0) and (ﬁ, s—iﬁ), with the possible exceptions of the points (1, HT”), (#,0).

Sketch of the argument. The main LP — LP" estimates are essentially proved in [1]. We sketch the argument.

d4¢ d+¢
Consider first the main endpoint La=r — L7+ estimate. In view of the constant rank assumptions on the
projection of C to the base space we may after appropriate localization and choice of coordinates write the
kernel as the sum ), ., Ki(z,y) and a Cg° function; here

Ky(x,y) = ka/€i<T’y”75(r’yl)>ak(x,yaT)dT

where the integral is extended over a conic open set of Rf, S is as in the introduction, the symbols aj, are
of order 0 with uniform bounds in k > 1, and ax(x,y,0) = 0 if || ¢ (2F—1, 2k+1).

Let T}, be the operator with kernel K. Standard L? theory (see [12], [22]) shows that T} is bounded on
L?, with norm O(2¥¢—=5%)). Clearly |Ki(z,y)| < 2¥¢+9) . Thus T} maps L' to L> with norm < 2k(+0)

Interpolatlon yields that T}, maps LT to LPL with bounds uniform in k. Since we assume that the
canonical relation C does not meet {0} x 7% and T*Q2 x {0} one can use standard integration by parts
arguments ([12]) and Littlewood-Paley theory to put the pieces together and one obtains the desired

L5 — Lkt estimate, cf. also [1]. For the endpoint L? — L? (or H! — L' estimate) and more references
see [22, ch. IX].

Finally assume —¢ < p < 0. Then an integration by parts argument shows that
|[Ki(a,y)] S 28O (L4285 = S(a,y)) Y

and therefore the sum in & is bounded by |y — S(z,y")|~#T9. In view of the compact support of the
kernel we see that K (z,-) and K(-,y) are uniformly in Weak-L7+7 . Thus the operator maps L to Weak-
L7 . A similar argument applies to the adjoint operator. Now one uses the Marcinkiewicz interpolation

d+2¢ 4L
to interpolate with the endpoint Li=r — L% estimate and further interpolation with the trivial L' and
L estimates to conclude. O

Let x € C§°(R? x R?) be a nonnegative function. Now let —¢ < p < 0,0 < o <d—{. If also p < 0 we
define the distribution kernel G*“ by

(3.1) GP (a,y) = x(@,y) |’ —y' |7 e, ly" = S(a,y)| T i —t<p<0
where .
I'(=*)
Crp, = 20 =t/2 2
’ I'(<5%)
so that the Fourier transform on R’ of ¢, ,| - |~(*+#) is [£|?, see [8]. Define G = lim, o G where the
limit is taken in the sense of distributions; clearly
(3.2) G (w,y) = 0(y" = S(a,y")l2" —y'|7 = x(a,y).

Define the operator R”? by

(3-3) RP7f(x) = (G (, ), f)

so that for p = 0 we recover the weakly singular Radon transform. We wish to apply Lemma 3.1 to dyadic
pieces localized in z' — ¢, after a suitable rescaling. Therefore we decompose dyadically

(3.4) RO =Y (R7+E07)

J
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with

(3.4) RY? f(a) = 20007 (2,0, f)

(3.5) 7 f(x) =205 (), f)

where

(3.6) 07 (2, y) = 2792 -y )G (L2 6o (2, y)
and

(3.7) W7 (w,y) = 277D | — o )1 = G ()G (2, ).

Note that this implies h% = 0.

Proposition 3.2. Let 0 <o <d—{, € <p <0 and let R be as in (3.1).

(i) Suppose that (1/p,1/q) belongs to the triangle with corners (0,0), (1,1) and (diH, d%_@). Then

1 1

IR flly S 2HFOG=2) =) £,

(ii) Suppose that —C < p < 0. Then the inequality

o j I _Ly49p0o
RS fllg S 2O G w20l

holds if (1/p,1/q) belongs to the pentagon with corners (1,1), (0,0), (1, “7”), (=£,0) and (';;_‘_’2, g—iﬁ), with
the possible exception of the points (1, HT"), (=£,0). Then

Proof. Let 4 > 0 and
(3.8) B(a,0) ={y: |y —d| <0,|y" —d" —(Sy(a,a),y" —a')| <6}

A sufficiently small neighborhood U of the origin is then made into a space of homogeneous space with the
balls B(z,9) (see [16], [22] at least for the case ¢ = 1), and for sufficiently large j we can cover U with a
family of balls B(z,,277) which have bounded overlap.

Fix j and observe that if f is supported in B(z,,277) then R f is supported in B(z,,C27) for a fixed
C. Therefore in order to prove the asserted inequality it suffices to verify it under the assumption that f
is supported in a ball B(a,d) where a € € is near the origin.

Fix a. Then we perform an affine change of variables, so that in the new coordinates we can write R? 7
as in (3.4), (3.6) with S(x,y1) replaced by s(x,y1) satisfying

(3.9) sy (a,a’) =0, sy (a,a’) = 0.
(3.9) implies that the ball B(a,277) is contained in
{y:|y —d| <A279 |y —d'| < A272%7}

for suitable A. Moreover we also see the rotational curvature in (1.9) at (a,a’) is given by det 8- s,/ (a,a’)
since we still have sy (a,a’) = Ip e, cf. (2.6).

We now perform a scaling argument and write

R27f(a’ + 2770 "+ 2720") = 2C0=ORE f,(v)
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where
RO g(v) = (077 (v,-), 9),
f;(w "y = f(a £ 2 ),
Ga(v,w') = 2% (—d" + s(a’ + 2700 a" + 270" d +277w)),
b’” (v,w) = b7 (a’ + 2700 a4+ 27" ) + 279w a4+ 27 w").

In view of s(a,a') = a" and sz (a, a") = 0 we check that the derivatives of S; , are uniformly bounded (in
a fixed neighborhood of (0, 0), which can be chosen independently of j and a) and also that the rotational
curvature is bounded below.

The rescaled operators 735’ "7 are standard Fourier integral operators, to which Lemma 3.1 (ii), (iil) can
be applied, the resulting L? — L? bounds are uniform in j, and in a. We apply Lemma 3.1 with the
relevant choice of p and ¢ and it follows that

VIR flly = 2R, £l S 2700 flly S 2OV £,
which proves the Proposition. O

For the estimation of the error term involving the terms 5}”” see Proposition 4.2 below.

4. Regular and product type fractional integrals

In this section we study nonisotropic and product type pseudodifferential operators, which come up as
low frequency contributions to operators in Z#>~7; in particular we prove LP — L? estimates for the error
term in (3.4). We recall a sharp version of Young’s inequality (see Theorem (6.35) in [6]) which states that
the conditions 1 < p < ¢ < o and

1 1

. 1
L +sup [[K(y)llere <00, —=1——4-,
y r P q

(4.1) sup [| K (@, )|

imply that the integral operator with kernel K (x,y) is bounded from LP — L1.

Lemma 4.1. Suppose 1 < p < ¢ < 0o. Define

(4.2) KP(z,y) = x(z,y) |2’ —y' |7~ y" — S(a,y")| 777"
(4.3) K57 (w,y) = x(@,9) (12" =y | + |y = S(a,y)[/2) 772070
and

Xyl = g7~ y" = S(a,y)7~0if [ =y P < 10ly" — S(a,y)|

4.4 K§%(x,y) = : '
(4.4) 57 (,y) {0 if la" —y'[* > 10[y" — S(z,y")]

(i) Assume 0 <o <d—t(, - <p<0,(d=0(1/p—1/q) <o, l(1/p—1/q) < —p. Then the integral
operator with kernel K{"7 maps LP to LY.

(ii) Assume -0 < p<0,0< o <d—"Cand (d+{)(1/p—1/q) < o —2p. Then the integral operator
with kernel K57 maps LP to LY.

(7i7) Assume —( < p <0, —p(d—=0)/t <o <d—"{and (d+()(1/p—1/q) < o —2p. Then the integral
operator with kernel K5° maps LP to L9.

Proof. We first consider (i). Let Jy, denote the integral operator acting on functions in R¢, with kernel

Jz’,y’ (xll,yll) — x(x',x",y',y")|y" _ S($,y’)|7pié.
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Ifl(1/p—1/q) < —pthen sup,n || Jor,y (2", -)||Lre < Cfor1/r = 1-1/p+1/q, uniformly in 2’,y'. Since the
quantities [y" —S(z,y')| and [2" —&(y, 2")| are comparable (cf. §2.3) we also have sup,. [z (-, 4")[| L <
C'. Thus by the sharp form of Young’s inequality stated above the condition ¢(1/p—1/q) < —p implies that
Jur y maps LP(RY) to L4(R"), with bounds independent of z’,y’. Likewise, since (d—(¢)(1/p—1/q) < o the
integral operator with kernel Y (2, y')|z' —y'|”~%T¢ maps LP(R?~) to L(R?~*) if Y is compactly supported.
Thus by Minkowski’s inequality (if 777 is the integral operator with kernel K7°”)

o ~r 0 ! Io— , 9., 1/q
7 sl < ([ [ [ R =1 a0 My t] )
- y
5 (/ [/X(x',y')lx'—y'|‘7_d+£||f(y',-)IILP(RZ)dy’}qu') q

N L/P
/”f Lz (Re) )

and hence T} is bounded from LP(R?) to L4(R?). This proves (i).

(ii) is proved by checking directly the condition (4.1) for r <
therefore omitted.

d+2

TF13,=0 the calculation is standard and

It remains to consider the operator with kernel K5*°. We now fix « and prove ||K§ (z,")||r~ < C
with C independent of z; here again r = %. Let v' =y — a2’ and v" = y" — S(x,y").
For a > 0 let
Qa) = {0, 0") : |07 "7 > a, P < 10R"), (0] < Ca}

We have to show that the set Q(a) has measure O( ). Ifw 6 Q(a) then [v']? < 100"

1 d—t—o
_ 1 _d—t—0o .. . 2
10a™ 7+7|v'|” »+f  and this implies |v'| + Sa” 7 or V| < a” 77#%=7 . Thus

~

1Q(a)| < / a7 ! | Ly

1
|v'|<a” TFTFZ=7

Now the condition —pde’Z < o is equivalent with — dié;”ﬁ > —(d — ¢) and therefore one can verify

e 1 (d— e a)/z d+e
|Q(O£)| Sca_e+pa d+z+2p—a(d = = (Co~ Ftt3p—0

and thus sup, [|[K57(x,")||Lr~ < oo. The verification of the condition sup, |[K5(-,y)l[zr~ < oo is
similar. O

Proposition 4.2. Suppose that 1 < p < qg< o0, (< p<0and0 <o <d—~{. Let EP° = Ej EJ‘-”U
(as defined in (3.5)) Then EP7 is bounded from LP to L7 if either one of the following two conditions is
satisfied.

(i) —p45t <o <d—Land (d+ 0)(1/p—1/q) < o —2p.
(i) 0 <o < —pT and (d—0)(1/p—1/q) < 0.
Proof. The kernel of £77 can be estimated by both K{"? and K¢ in Lemma 4.1. For (i) apply the

estimate for the integral operator with kernel K%5*”. To prove (ii) from Lemma 4.1 observe that inequality
((1/p—1/q) < —pis implied by 0 < 0 < —p%=t and (d — ()(1/p—1/q) <o. O

We shall now look at the basic dyadic pieces in decompositions of operators in Z#~7. Let
w272k |TC(27™¢)) if k> 0,m >0,
wo(|T)C(27™[€]) iftm>0,k=0,

w27 7)) G (I€]) if k>0,m=0,
wo(|T)Co(I€]) if k=m=0.

(45) ﬂk,m(x7y77—7 6) =
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Suppose a € SP>~7. Let
(46) Kimlaw) = [[ | el =S ag, ) @y, 7, €)drde.
RI-£xR!

Let Tk, be the integral operator with kernel Ky n,(z,y).
Lemma 4.3. Ifa € SP77 then

(1)
22kt gm(d—)
4.7 K. < 92kp—mo .
( ) | k,m(I,y)| ~ (1+22k|y”—5(x,y’)|)N (1+2m|x’—y’|)N’
moreover
: ok 22kt om(d—)
(4.8) IV Ko (2, y)| < max{4¥, 2m}22ke—mo

(14 22K|y” = S,y )Y (L+ 27" —y' )Y
(ii) Let K be the Schwartz kernel of an operator in TP~ given by (1.10), and assume that —¢ < p < 0,
0<o<d—{. Then K satisfies
[K (@, 9)| S ly" = S(a,y" )|~ o’ —y/|7 7"

Proof. (i) follows by integration by parts. (ii) is deduced from (i) by summing geometric series. O

Proof of Theorem 1.2.4. Immediate from Lemma 4.3 (ii) and Lemma 4.1. O

We shall now look at a general operator in Z?>~¢ and consider the contribution which gives rise to a
nonisotropic pseudo-differential operator .

Proposition 4.4. Let a € SP"~7 and suppose that 1 < p < q < 00. Suppose that — < p < 0 and that
—pdTT‘Z <o<d—Cand (d+0)(1/p—1/q) < o —2p. Then the operator y <o > . < LThm is bounded from
LP to LY. - -

Proof. We use the kernel estimates (4.7) and sum. We find that the kernel P(z,y) of 3 ;~o 22,55 Th,m
satisfies the estimate
r_ o lo—2p—d—{ if ly" — S 1/2 < |l — off
|P(z,y)] 5{ |x/ yl|Z—d-‘ra " NG 1 |y/l (x7y)|1/2 N |x/ y/| '
2" =] ly" = S(z,y)™" if [y" = S(z,y)[77 2 |2" = |
Thus
|P(z,y)| S K57 (z,y) + K5 (z,y)

and the assertion follows from Lemma 4.1. [
For later use we also write down a similar estimate for an operator with localization in |z" — y'|.

Lemma 4.5. Let a € S° and Ky, as in (4.6), with p = 0. Denote by Wy, ., the operator with kernel
Ky (2,9) 0 (2% (J2" —'|)). Suppose 1 <p<q< oo and (d+0)(1/p—1/q) <o,0< 0o <d—"L. Then for
s > 0 the operator Y, Wy i is bounded from from LP to L%, with operator norm O(2-sld=t=0)),

Proof. This follows in a straightforward manner from (4.7) and Lemma 4.1. We have the estimate
2k(d+€70)27s(d7€70)
T2y = (e, + 2o )
here we choose N > (d+(—0). If |y —S(x,y")| < |2'—y'| ~ 2% we simply dominate by 2*(¢+¢-o)p=s(d—t=0)

which is in the present case controlled by 2=5(¢=¢t=) K27 (x y) (cf. (4.3)).

If |y — S(x,y")| > |o' — | = 27% then |Kp i o(x,y)| < 2750 |y — S(x,y")|~(@+9)/2 and in
the case under consideration this is also controlled by 2~5(~¢=9) /*? (. y). Since for fixed (x,y) the sum
> ks K k—s(r,y) contains at most three terms, we see that the assertion follows from Lemma 4.1. O

| Kk s (2,9)] S ( v 162" (2" = y)l;
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5. Weakly singular Radon transforms and some variants

In this section we give a proof of Theorem 1 and part 1.2.3 of Theorem 1.2. We first introduce an
additional angular localization in the angular variable.

Let v € R4 be a unit vector. Let

o n_g 7 '
r(e,y) = x(2,9)G (6‘1°|ﬁ - U|)C0(%)

ki, y) = K(z,y)C(27 (|2" — o))

here  is a nonnegative smooth function supported where |z| + |y’| < £!° (see (2.16)). Thus

o —
(5.1) supp K C {(z,y) : || i

m —U| < 510,|$| < 510,|y| < 510,|y” — S(a,y")| < | —y'|2}.

Let G*? be as in (3.1) and define
(5.2) RP? f(x) = (G (x, - )k(x, ), f).

The operator R%? introduced in §3 is a finite sum of operators of type R%° (with suitable choices of
and v). Moreover, for p < 0 we recover the operators R”:° modulo error terms which are already estimated
by Proposition 4.2. The case p = 0 of the following result implies the assertion of Theorem 1.1.

Theorem 5.1. Let 1 <p < g < o0.
(i) Suppose that (1/p,1/q) belongs to the intersection of the halfspace defined by (d + 6)(% - %) <o

with the triangle with corners (0,0), (1,1) and (d;j_g, d%_e). Then R%° maps LP to LY.

(ii) Suppose —C < p < 0 and —pdTJ <o <d—{. Suppose that (1/p,1/q) belongs to the intersection
) . ‘
of the halfspace defined by (d + 6)(% - %) < o — 2p with the pentagon with corners (1,1), (0,0), (1, 2),

(=#,0) and (‘é—;‘é, s—j_'ﬁ), with the exception of the points (1, HTP), (=#,0). Then R maps L to LA.

For the rest of this section we fix p, o and will not explicitely indicate the dependence on these param-
eters. If p = ¢ the assertion is easily verified by Minkowski’s inequality. This also applies to the cases p =1
and ¢ < £/(+ p), and ¢ = oo and p < —¢/p (when —¢ < p < 0). Thus we may assume 1 < p < g < 00,
and that (1/p,1/q) satisfies the restrictions in Theorem 5.1; moreover we may assume p < 2 since the case
p > 2 follows by considering the adjoint operator. It is always assumed that the function f is supported
where |y| < ¢! and ¢ is as in (2.16). These assumptions are always assumed but not explicitly stated in
various lemmas throughout this section.

Define

(5.3) Rjf(x) =(G"" (2, )k;(x,), ).

Then R; is bounded from L? to L? with a bound independent of j, by Proposition 3.2. Let M be such
that 2M > (ec) 710 (with co as in (2.8)) and let J be a finite set of integers, all of them > M. Let

(5.4) Rf =D R;f
JjEJ

A priori we know that R is bounded from L? — L? with norm O(card(J)), and our task is to improve this
to show that the LP — L? bound is independent of the cardinality of J. Once this is proved the LP — L9
boundedness of R?? follows immediately from applications of the monotone convergence theorem.
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We begin by cutting out the low frequencies (here we follow essentially [2], [11]) and split R = A + B
with

(5.5.1) A= wo(2¥[D")R
JjeJ

(5.5.2) B=Y (I-w(2¥D")R
jeJ

We first prove
Lemma 5.2. The operator A is bounded from LP to LY, with norm independent of the family J.

Proof. Since the convolution kernel wo(2727|D"|) is O(2%¢(1 + 2% |2"|) =" we see that for p < 0

|lwo(27[D")R; f ()|

22]'2
5 /// (1 + 22j|x// _ w”|)NGp’U(x',w”,y',y”)lf(y’,y”)|dy’dy”dw”
ly" —S(z",w" y") |<2—2]
| —y' |~277
250
< // |f(yl y/’)|2j(d—€—0') / 2 J |U)” _ G(yl yll xl)|—p_gdw,, dy/dy”
~ {( ’ H) , ‘ 6( - I)l (]- +22J|x// _wll|)N ’ )
y'y'): w'=&(y',y" x
‘xl_yllz27j} <27’)J
9j(d+t+2p—0) S
// (1+22j|33”_6(y17yu,x/)|)N|f(yay )dy'dy";

o' —y' |27

here & is as in §2.3. The same estimate applies to the case p = 0 (with only notational changes in the
argument).

We see that the kernel of wy (2_2jD”)Rj_ can be estimated by K37 (as in (4.3)), uniformly in j. This
bound also applies to the sum ZjeJ wo(272 D")R; since the kernel of wy(272/ D")R; is supported where
|#' — y'| = 277. Thus the assertion follows from Lemma 4.1. O

We now turn to the operator B and we shall first prove estimates for a frequency localized variant.

Proposition 5.3. Let ¥ be a fized unit vector in R® and let u be unit vector in R*~* so that

(5.6) [ Var )0, V)9 (0,0)] = max (U, Var)(o, Vy)9-S(0,0)].

Suppose further that the standard assumptions of §2.1 and (2.16) hold and

(5.7) (u, Vp)S(z,2") =0
for all |z| < e. Let a(n') be supported in {n'" : 1Y) < &5 and satisfy 10%a(n")| < |n"|~1% for all
[n"] ~
admissible multiindices o. Let
© =a(D).

Then the operator ©B is bounded from LP to LY and its operator norm satisfies the estimate

1-%
1OBlr—za S 1+ Rl 2 14
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Proof of Proposition 5.3.

We can rewrite B as

B=Y Y w2 D")R;.
jeEJ k>g
Let L be defined by
L f(n) = w7 0" )a(n").

then OB = ZjeJ Z,Dj LiR;.

We shall now introduce an angular Littlewood-Paley decomposition (as in [14]) and proceed for the
proof of our endpoint estimate using a well known argument by M. Christ (his preprint [3] is unpublished
but the argument has been used in various related articles on LP improving properties of convolution
operators; for a rather general formulation see [10]). Define operators Py j, Py ; by

M

(5.8.1) Py = C272H* (u, D))
i=—M
M+10

(5.8.2) ﬁk,j: Z C(27 7 (u, D))
i=—M-—10

(we have chosen 2M > ¢;1e710). Define also
L= Y w2+ )
i=—10

The operator ©85 is then decomposed as

OB= Y LR =T+&+E+E

JjeEJ k>j
where
(5.9) T=> > LiPeyR;Py;Ly
JjeEJ k>j
(5.10) E' =" LI — Py j)R; Py Ly
JjeEJ k>j
(5.11) £ =" LyR(I - Piy)Ly
JjEJ k>j
(5.12) E3 =33 "LiR;(I - Ly).
JjeEJ k>j

The main term is represented by 7, and we shall show that the operators £, £2 and £2 have quanti-
tative properties similar to or better than the operator considered in Lemma 5.2.

For the main term we use the known argument in the translation invariant case [3]. Let Tyeet denote
the operator acting on LP(¢?(Z?)) functions F = {Fj;} by

(Tvect Flje = RjFj k.
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By Littlewood-Paley theory and complex interpolation (note that p < 2)

ITlLr e S ||7'vecc||m 2)—La(e2)
1—p/2
(5.13) S ||7:fect|| ) (0P)— L4 fz)||7;eCt||Lv€€x)aL‘l(l°°)'
From Proposition 3.2 and Minkowski’s inequality it follows that

(5-14) ||7:/ect||L1’(l1’)%L‘l(€1’ 5 1.
Also by the pointwise inequality |R;(f)| < R(|f]) and the positivity of R we have

sup R Fj ()] < R[Sup|FJ k(@)
gk gk

so that
(5.15) I Tvectl| Lo (o) pae=) S IRl Lr—La-

Therefore in view of Lemma 5.2 and (5.13-15)
. 3
(5.16) T Nrsze < OO+ IR, + D 1Eillzr—pa)

Consequently the proof of Proposition 5.3 will be complete once we verify the uniform L? — L% boundedness
of the operators £%, £2, &3.

It will be convenient to work with oscillatory integral representations of the kernels of R;. Since the
Fourier transform of ¢, | - [P*¢ is |£]? (see [8]) we can write the kernel R; of R; as an oscillatory integral

Rj(xz,y) = k;(x,y)|z" — y’l”’d“/6Z<T’y”’s($’y')>|7|”df
For k > 1 we denote by Rﬁ‘ the operator with integral kernel

. d—t—o Uru" —S(z.y oL _ T
RY(z,y) = rj(x,y)le’ -y~ )/€< WIS (27 7)o (e 4|H—19|)|T|pdﬁ

the operator RY is defined similarly but with w(2~2"|7|) replaced by wo(|7]).

Lemma 5.4. (i) The operator ), R} maps LP to L9.

(it) Let s > 0. Let Zs(w,y) denote the distribution kernel of the operator 3=, Liys(R; —23274 R;HH).
Then

|Zs(2,y)| S 47° K97 (2, )]

is defined in (4.3). Thus this operator maps LP — L% with operator norm O(4~%).

where K57

Proof. (i) It is easy to see that by the theorem on fractional integration the operator ), R? maps L? to
L7, provided that 1 < p < ¢ < oo and (d—¢)(1/p—1/q) < 0. However the condition (d—¢)(1/p—1/q) <o
is implied by (d+ ¢)(1/p—1/q) < 0 —2p and —p(d — () /¢ < o which is assumed throughout this section.

(ii) Note that

4
R;— Z R§-+S+l = ZR]+S+T + SOJ+S + Z Vjjts+r + V9 Gi+s

i=—4 r>5 r>—4
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where the kernels S, Vjx and V2 of 87, V;x and VJ, are given by

—(d—t—0c W7y —S(z,y —2(k— -4, T
Shulay) = Ky y)la’ —y'| 70 )/e< R e L C 4lm—19l)d7
Vialot) = ! =7 f el S e et (o= 606y = o)

—(d—t—0c Wy —S(z,y’ —2(k— -4 T
Vik(@.y) = kj(a,y)la’ —y'| 74 )/e< WS Dy (27| (1 - Go(e 4lm—0|))dr

We shall now show that the distribution kernel of 3~ £j+sR§+S+T is for > 5 controlled by 4~ (s+7) K57
(cf. (4.3)). Also the kernels of 37, L1587 ;. and 37, L;45V} i, are bounded by 4~°K3"?; we shall omit
the entirely analogous argument.

The kernel of £, R¥ is given by

Kyin(o,y) = (2 [ [ [ el = o rinal st

L o T /i-(x’,w”,y’,y”)
w@ DI 0 Nan")6o (e P = =)=

T
We need to estimate this kernel when & > n + 5, and n > j. The w'-gradient of the phase function is
—n"" — Vo (7 - S(w,y')) and since ||S,n — Ip || < /2 this gradient is now ~ 22* (note that it would be
~ 2°" if we worked with £,,S7,).

We use integration by parts with respect to w'’ followed by integration by parts with respect to 7 and
n. Observe that with each differentiation of r;(2’,w"”,y) we loose a factor of 22/, the main contribution
coming from differentiating (o(|w” — S(a’,w",y")|/|w’ — y'|?). Thus we gain 272%*2) with each integration
by parts in w”. As a result we obtain that the kernel of ﬁan is dominated by a constant times

dw' dn'" dr.

Cor o 3 92k (l+p) 92nt
2 (2k—24) No |I’ _ yl|0' d+¢ dw"
(1 + 22k|yu _ S(x’,w”,y’)|)N1 (1 + 22n|xu _ wu|)N1
22k(€+ﬂ)

5 min{27(2"72j)(N°7N1), 27(2}:72]')(N07N1)}|x1 _ yl|ofd+é

(1 + 22k|yu _ S(Il,xll7yl)|)N1 ’

here we choose Ny > N;. Moreover the kernel of the operator £,S; is of course supported where
|2' —y'| ~ 277, The asserted pointwise estimate for 3, LRI
geometric series.

is now a consequence of summing

The same argument applies to the operators Zj LjtsVjj+s+r, T > —4. Note that the above restriction
r >4 (or k > n+4) is not necessary now in view of the factor (1—¢p (s’ﬂﬁ —1|)); namely the assumptions
1" € supp a (hence /|| —9| < €®) and |7/|7| = 9| > */2 > & guarantee that | — 7" — 7-Syn (w,y')| &
max{|n"|,|7|} which is sufficient to carry out the above integration by parts arguments. O

We shall now bound the operators £', £ and £° in (5.10-12). However we first modify these operators
by replacing £;R; in the definitions (5.10-12) by i, Ly RET. Let for i = —4,....4

(5.17.1) € i = Lol — P )REVP, I,

(5.17.2) 1= LiRET (I = Py )Ly

and

(5.18) £ = LyRETU(I — L)

and let

(5.19) R =338t =4
JjeEJ k>3

similarly define 52”', ER
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Lemma 5.5. The operators £ — 2?2_4 ELi g2 Zr s EX and €3 — Z 53 ¢ are bounded from LP
to LY.

Proof. This is a consequence of Lemma 5.4. We use it in conjunction with Littlewood-Paley theory, the
iterated version of the Fefferman-Stein vector-valued maximal function and the Marcinkiewicz-Zygmund
theorem on vector-valued extensions of L? — L? bounded operators ([7], [22]). We use the pointwise
estimate |Py ;9| < Mg where M denotes the strong maximal function. Let F”“ be the fractional integral
operator with distribution kernel K2?. Then

/
||E f Z 51 lf”q 5 Z H(Z| I PJ+8,J J+s (R - Z R]+S+Z)PJ+8,J ]+sf| )1 i

5>0 jeJ i=—4
S 24

(Z DRFPU[|PJ+S,3 ]+sf| ) H 24 SH(Z Fp70[|13j+s,jzj+sf|]]2>1/2
S 4

jeJ jeJ
s>0 JjeJ

q

q

~ ~ N\ L/
(Z1PresZint ) ) S 151

The other estimates are proved in a similar way. O

As a consequence of Lemma 5.5 it remains, in order to conclude the proof of Proposition 5.3, to show
that the operators £, €27, £3:¢ are bounded from L? to LY. We shall show that £ maps L? to L?. The
proof of the boundedness of EV s very similar and will therefore be omitted. Finally, the arguments in
the proof of Lemma 5.4 show the LP — L7 boundedness of £3; the details will be omitted as well.

Boundedness of ELi. We analyze the kernel of £ (I — Pk,j)Rfﬁ which is given by

(5.20) Ky ji(w,y) = (2m) / / / / / e @B AT ) gt By, T, A ) drdiy dA dh dt
where
(521) go(x, t? th Y, T, )‘7 77”) =—tA— <77”7 hH) - <7—7 S(xl + tu7 33” + th y’) - y”>
and
(5.22) ar (e, t, by, 7, A 0") = a(n )@ " )w(@2FH |7))|7|?
Colex MIm/IT| = O x (@’ + tu, & + B y)r; (@' + tu, 2" + B, y)a’ + tu — ' |71 = Qu (272 |A))
with ¢ = M, ¢(2°9).
Claim. For s >0, 1= —4,...,4 we have

(K jips,i(w,y)] S 477 KY7 (2, )]
uniformly in j. Here the right hand side is defined in (4.3).

Taking the claim for granted we can argue as in the proof of Lemma 5.5 and obtain using Littlewood-
Paley theory and the boundedness of the operator F*»° with kernel K47

||E1 lf” - H ZZ[:H'S I P, J)RH_S—HPJ%-SJ J+sf‘
s>0jeJ
1/2
S Z H (Z [ £t - PHSJ)RHSHPHSJ J+sf| )
s>0 jeJ
5 2475 (Z |FP7 |Pj+s,J j+sf|]| ) H
s>0 ]GJ

- /:
(Z |Pj+s,ij+sf|2)1 sz Sy

JjeJ

Sy
s>0
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We proceed to prove the pointwise estimate claimed above. We note that
(5.23) apji(e Wy, oA n") =0 if |\ € [22FTITMAa 92k—jt M—dy

Now we first integrate by parts many times in (5.20) with respect to ¢; this is then followed by an integration
by parts in the (A, ", 7) variables.

Note that because of (u, V,,S(y',w",y’)y = 0 we may expand

815%0(507 t? h‘”7 y’7 T, /\7 77) =-A- <u7 T'Sz’(x, + tu? 33” + h‘”7 yl)>
=N+ {u, 7 Spre (2" + 0"y (@ + tu—y")) + o (x, ' t )
(5.24) ==X+ (u,7-Sp2(0,0,0) (2" + tu —y")) + 7+ ( Z ro(z,y' t,h"))

v=1,2
where

|T'1(CU,y,,t7h”)| S CVl|y’ -z - tU|2
|T2($,y,,t7h”)| < C'1510|y, —x - tu|

Differentiating (5.7) we see that
(ty Syt (2, 2") + Spryr (2, 2')) = 0
and by (2.7-8) and the choice of u we deduce that
co2% 72 < |(u,T-szwr(0, 0,0)(z" + tu — y'))| < cptohmits
and consequently, by our choice of M
92k=j=M+5 < [ 92h=j=2 < |3t<p(x,t,h”,y',7',/\,77”) +)\| < g 19?hi+8 < 92k—i+M=5
on the support of the symbol; hence by (5.23)
|0cp(z, t, 1"y’ 7, A, ") > max{\, 22877},
Moreover the higher derivatives of the phase functions are O(22*=7). Taking s derivatives of k; with

respect to w' (in any direction) causes a blowup of size O(2%7%) which would be too much for our argument.
Fortunately, in view of the assumption (u, V. S(y',w",y")) = 0 we have the better estimate

({4, V)i (w,))) = O(27%).

Thus we may perform integration by parts in the ¢ variables and gain factors of size 2(21=2k)N " Thjs is
then followed by an integration by parts in the frequency variables and we obtain

| K ji(x,y)| S 270 o)g2heg=(2h=2) /Xj(x’ +tu—y)x(@ +tu,2” + b y) x
22k—j 22/62 22/62
(4 230 (L4 2 (L4 2557 — S+ fu, a7 + W, 7))

dtdn”.

Now observe that _
1S(&" + tu, " + 1", y") — S(x,y")| SB[+ 277[t] + J¢]?
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and therefore
221:[ 221:[
<
(T + 27— 8+t + W)~ 1+ 25y = 8, g

(L4 22F 77 [t] + [¢]* + 22F|n" )N

This yields

| Kk ji(w,y)| S 27 GE20(Namp=bildtt=at20) (1 4 92Ky — Sz, y)]) "N x

22k—j 92kt
(! ) " 7 " .
//leRlXj(x y' —tu)x (2" 4+ tu, 2" + h 7y)(1+22}g—j|t|)N2—N3 (1 + 22K 7])) Na—Ns dtdh

where x; denotes the characteristic function of [27771 2771y [-277FL —277~1].

This integral is straightforward to estimate. Observe that 27(@+H¢=o+20)(1 4 22k|y" — S(z 4" )|)~ N2 is
bounded by |y” — S(z,y")| (@+t-0+20)/2; thus if |2’ — y'| < 0277 we use either this bound or the bound
21(d+t=0+20) and estimate |Kp ;;(x,y)| by C27F=2)(Ni=p=) D7 (3 y).

Next, if C277 < |2/ —y/| < e and |y" — S(z,y)| < € then x;(2' —y’ — tu) vanishes unless |t| > cl2’ —y/|.
In this case the contribution of the t integral above is

O((Qj_2k|xl _ y/|—1)N2—N3—1) + O((2_2k|xl _ y/|—1)N2—N3—d+Z).
Thus in this case
[ g, y)] S 27 G209 20) (1 4 9! — ) 72N (14 2%y = S(a,y'))) ™

where 2N = min{Ns — N3 — d + ¢, N3}. We may choose 2N < N; + 2d and N > d and again the bound
| K ji(w,y)| by C27(2k=2)(N1=p=0 (7 (4 y) is straightforward. Thus we have established the pointwise
estimate claimed above. This concludes the proof of Proposition 5.3.

Proof of Theorem 5.1, conclusion. We have to prove that R in (5.4) maps L? to L?; assuming the
angular localization (5.1) in the 2’ — ¢ variables. We split the identity operator as Ey + >, O, where
Ey = no(D") and g is compactly supported in {n" : |"| < 1000}. Moreover let ©, = a,(D") where a, is
a constant coefficient symbol of order 0 supported in

nll
{77" : ||n”| - 191/| < 557 |77”| 2 100}7

we can arrange this decomposition so that the sum in v is extended over O(¢>~1) terms. Clearly it
suffices to bound EyR and ©,R for all v. We first note that the argument of Lemma 5.2 shows that EyR
maps L? — L2if (d+0)(1/p—1/q) < o —2p.

It remains to consider ©,R? for fixed v. Let u, be a unit vector in R¢ so that

(s Var v, V)9, -5(0,0)] = max [(U, Var){v, Vi), -5(0,0)].
cSd—¢

Now denote by Q¥ the change of variable Q(-,u,) as defined in §2.2, moreover define Q,h(w) = h(Q,w)
for functions supported in B.s. Let R” = Q,RQ,!; then the assumptions of Proposition 5.3 apply to R”
(with u = u,).

Define O, = a,(D") so that @, is supported in {n” : |‘Z—::| -9, <% > 10}; and a, (") = 1 if
|‘Z—::| —4,| <e? and || > 20}. Then by Proposition 5.3 and Lemma 5.2

o v vil—%
(5.26) 10, RY||Lr—za < CA+[[RY|| 102 1a)
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But in view of the support properties of the kernel of R and the local LP and LY boundedness of the

operators £, and Q! we get
IR |Le—re SIRILr—La-

To conclude the proof we split
R=ER+)» 0,9;'R"Q,

= EyR+ Y 0,9;'0,R"Q, + Y 0,9, (I - 6,)R" Q..

By (5.26)

(5.27) 10,9, 0, R Qy llpvsszs S 1+ RN 2,
and it remains to show that

(5.28) 10,9, (I = 0,)R"QullLrre S 1.

Now let Ly = wo(|D"|) and Ly = w(4=F|D"|). We analyze the kernel of Ly0,Q;'(I — ©,)Ly,
denoted by Hy, s ,(2',2",y"). The inverse change of variable Q7! is of the form z — (2/,G,(x)), with
1(Go)er — Logll < €7 (cf. (2.17/18)). Thus Hy s, is given by

Hk,k’,l/(xlv xl/, y”) =

/// ez((m”72”777”)+<g,,(z'7z”)fy”,§”))w(47k|n//|)w(47}s’|£H|)ay(nu)(1 —'dl,(f”))dz”df”dn”

The z"-gradient of the phase function is of size ~ max{4F, 4’“’}, therefore we may argue as in the proof of
Lemma 5.4 above. In particular, after additional integration by parts in &”,n" when x is large we obtain
that

|Hio,o (2", 2", y")| S min{d ™" 47 P14 [2"]) 2,

In view of the localization properties of R¥ and the LP boundedness of R it follows that
|1Lx©,9; (1 — 0,) Ly R Q|| 1r— e < min{a™F 47}

and as a consequence (5.28) holds.

Putting all the estimates together we obtain that
1-p/2
(5.20) IRllze—ze S LHIRIEE,

and since we already know the finiteness of ||R||r»— 1« the estimate (5.29) implies a bound uniform in the
family J. 0O

We can now give the

Proof of Theorem 1.2.3. By summing geometrical series we see from Lemma 4.3 that the operator
Y m>0 2ksm Lk,m can be pointwise bounded by a combination of operators handled in Theorem 5.1;
in this calculation we use that p is negative. Moreover the operator >, o> t<,, Tkm is bounded by
Proposition 4.4. The assertion 1.2.3 follows. [
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Necessary conditions. The necessity of the conditions in Theorems 1.1 and 5.1 follows from standard
examples. For the sake of completeness we shall briefly describe them. We assume that p < 0 and
1 < p < g < oo and consider the operator R”?. We remark that for the case p > 0, the conditions in 1.2.1
also cannot be improved. This is because any strict improvement would yield to an improvement in the
case p = 0, by interpolation with the estimates for a negative p; close to 0.

Let Bs be the ball of radius § < £'°, centered at the origin, and let ys be the characteristic function
of Bs. Then ||xs|l, = 6%/? and RP7xs > §%¢~7 on the set {z : |2'| < 62,2 — &(0,2")| < ¢d} for small
c. Thus ||R>x;sl|, 2 6% ¢+~ (@=0/0 and we see that the condition d/p — €/q < d — € — p is necessary.
By applying the same example to the adjoint operator we get the necessary condition ¢/p — d/q < —p.
Thus (1/p,1/q) belongs to the pentagon with corners (1,1), (0,0), (1, pT'f'Z), (%#,0) and (‘é;_‘_’é, S—j_'ﬁ) and this
pentagon becomes the triangle in Theorem 1.1 when p = 0.

If p < 0 then the operator R”? is not bounded from L' to L*/*# as one checks that one has the lower
bound RPy; 2 §%z" — &(0,2")|7*~ ¢ if C§ < |2" — &(0,2)| < &, with C large. By applying this to the
adjoint operator it follwos that R”? is not bounded from L=*/¢ to L™.

Next let Ps be the plate {y : |y'| < 6,|y"| < 0} and let fs; be the characteristic function of Pj,
thus ||fs]], < 6(@+9/P. One checks that in a fixed fraction of P; one has the lower bound R fs(x) >
§772; in this calculation we use (2.2) and (2.6). Thus ||[R”° fs||, = 67 2¢*(@+0/¢ and the condition
(d+0)(1/p—1/q) < 0 —2p is necessary. This concludes the proof of necessity in Theorem 1.1 and Theorem
5.1.

A third necessary condition for the LP — L? boundedness of R*? is (d — ¢)(1/p —1/q) < 0. To see
this let g5 be the characteristic function of {y : |y'| < 9, |y"| < e}. Then R”7gs > ¢° for all x in a fixed
fraction of this set and from this one deduces the necessity of the condition (d — ¢)(1/p—1/q) < 0. Notice
that the condition (d — ¢)(1/p — 1/q) < o is more restrictive than (d + €)(1/p —1/q) < 0 — 2p if and only
if 0 < —p(d — €)/¢; thus this example is only relevant to show the sharpness of 1.2.4.

6. LP estimates for Fourier integral operators

It will be convenient to introduce some normalized classes of symbols.

Let k£ > 0 and 0 < m < k. Then we denote by Sj ., the class of symbols a(z,y, &, 7) supported in

{(@,y,7,8) 1 |z| +y| <, 2271 <|r| <22 2m b <) <2} if 0 <m <k,

6.1
(6.1) {(x,y,7,€) : |o| + |y| <e,22F71 <|r| < 22FFL €] < 2} if m = 0.

for which (1.11) holds, with p = o = 0. Moreover, if m > 0 let ¥,, be the class of symbols a(z,y, &, 1)
supported in

(6.2) {(@,y,7,8) 1 |2| + |y| <e,|r] < 22mH 2m=t <) < 2mF1)

such that (1.11) holds with p = o = 0.
We recall that 7 [a] denotes the integral operator with kernel (1.10).

L? estimates.

We shall assume that a € Z°>~7 and begin by proving L? estimates. These are quick consequences of
what is already proved in [11], and we shall be brief. It is shown in in [11] that L? boundedness holds if
2p—0<0,0< o0 <d— (. While the endpoint estimate corresponding to (p,c) = ((d — ¢)/2,d — {) may
fail the proof of the estimates in [11] still provides useful information which will be used in an interpolation
argument in §7.

Lemma 6.1. (i) Let a,, € Sy, and suppose that sup,,~, [cm| < 1. Then 337 1 ¢Tlam] is bounded on
L2
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(ii) Let a € S“='=% and suppose that a(x,y,T,&) =0 if || > |€|?. Then Tla] is bounded on L*.

Proof. We note that the phase function ®(z,y,&,7) = (£,2" —¢') + (1,y" — S(z,y")) parametrizes the
diagonal in T*Q x T*Q as a Lagrangian manifold; that is {(x, ®5,y, —®,) : & =0, P, = 0} is a subset of
{(z, &2}

Because of the support restriction of a,, the symbol Zm>0 CmGm, belongs to the Calderén-Vaillancourt
symbol class S? /2,1/2- It is shown in the proof of Proposition 2.7 in [11] that Hormander’s equivalence of
phase function theorem remains valid with Sf /2,1/2 symbols and that consequently 22:1 e T [am] is a

pseudodifferential operator of order 0, with symbols of type (1/2,1/2). Thus the L? boundedness follows
from the Calderén-Vaillancourt theorem. (ii) is an immediate consequence of (i). O

Lemma 6.2. (i) Let mo > 0 be fized and for k > mg let m(k) be an integer such that mo < m(k) < k.
Suppose that supysq [cx| <1 and that g, € Sk (k) -

Then the operator ) ... ck4k%2_m(k)(d_€)7'[ak] is bounded on L?, with norm independent of the
chosen sequence {m(k)}.

(11) Suppose a € ST and suppose that a(z,y,7,€) = 0 if |7| < C|E|M?, and, for m > 0, let

am(2,y,7,&) = C27™ ) a(x,y,7,€). Then Tlam] is bounded on L* with operator norm independently on
m.

(iii) Let {ay,} be as in (i) and let n € 53/2’1/2(9 x Q,RY). Then the statement in (ii) remains valid if
g s replaced by nay,.

Proof. For (i) we note that the kernel of T[ay] is given by

o [ e Sy
where
(64) bk(x,y77) = /0[]\3(3_«:7y77-7 £)€Z<I,_y,7£> df

Note that for every k the ¢ integration is extended over a dyadic annulus {¢ : |¢| ~ 2™(*)} and thus
|brm (2, y, )| < 4P(@0/2 x5 |7](@=0/2 Moreover, by examining the derivatives of by, one checks as in [11]
that by, is a symbol of order (d — ¢)/2 and type (1/2,1/2). Since the phase function involves ¢ frequency
variables one may argue as in[11] and deduce that ), ., c;7T[ai] are Fourier integral operators of order
0 and type (1/2,1/2), hence bounded in L? (with bounds independent of the sequence {ai})-

Part (ii) follows from part (i) with the choice m(k) = m if we observe that the symbols a,, with the
assumed support property can be decomposed as C') ;... 2k(d’f)/22m(f’d)ck7mak7m where ¢;,,, <1 and
ak,m € Sk,m. Clearly the above argument also proves (iii). O

Remark. The variant (iii) is included in order to cover localizations of the form a , (z,y, 7,£)C(27 (|2" —y']))
if j < k; these are of type (1/2,1/2) since ay,, is supported where 7 ~ 22%.

H!' — L1 estimates.

Lemma 6.3. Suppose 0 < o < d—/{, a € S® 7, and suppose that a(x,y,,&) is supported where || >
Lr|/2. Let
a(z,y,7,§)C27™E)  ifm >0
65 nomi6) = { m=0
a/(xvvav £)<0(|€|) me =0
Then Tlam] maps L' boundedly to L', with operator norm O((1 +m)27=™),

Proof. The kernel K, can be written as >, K, where Ky, is as in (4.6) and satisfies (4.7) with
p = 0. The operator with kernel K} ,, is clearly bounded on L', with norm O(2=™°). O
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Lemma 6.4. Suppose a € S, 0 < o < d—{ and suppose that a(z,y,7,£) is supported where |£| <
2|7|Y2. Let an, be as in (6.5). Then Tlan] maps H* boundedly to L', with operator norm dominated by

c2—me,

Proof. By the theorem on the atomic decomposition ([7], [22]) it suffices to estimate T [am]fo where fq is

an L? function supported on a cube @ with center yg and sidelength dg < 1 so that || foll2

f deI =0.
We define the exceptional set

Wo ={z:]2" — (yQ)'| L &, 2" — &(yg,a')] < Cég};
for large but fixed C; on this set we shall use a mixed norm L!(L?) estimate.

We define phase functions and amplitudes on R® depending on the parameters 2, y’. Let

b (2 4 1) = / a2y g 7, ) VO g

and
&=V (2 y", 1) = (1, (2" y') — y").
Denote by T,fl”y’ the operator with kernel

K2 (2", ") = / e D (o 7 der,

By an integration by parts one sees that
2m(d7l70')
T+ 27 =y D~

|azrr HaBbz 7y | S CQ7B

< 56_2d/2 an

d

and by the standard theory for pseudodifferential operators and their behavior under changes of variables

it follows that
2m(d {—o)

HT]; ||L2 RY)—L2(RY) S (1+2mfa’ —y' )N

We now estimate the contribution on Wg. For fixed 2’ set Wg = {a" : (2',2") € Wy} Let

fU (") = f(y',y"), then
Tme(x',x”) :/ Tn€,7y’fy’dyl'
yl

On Wg we bound

/ | Ton fo(@)|dz < / / / ITE £ (a')|dy' da'" da’
WQ

|’ —(yq) [z" —G(yg, ol
/2
" !
) dx

56%/ /‘/|7'z7yfy II
. 1
sog [ [ ([ sganpae) " aray
gm(d—t—o) , . 1/2
< 2/2// / Yy my12 " ! !
08 | | trrmmm =gy U, e 0OPar) 'y
. , 1/2
52—777,0’622/2/ (/ |f5 (y/l)|2dyll> dl’l

(6.6) <2758 | folla S 27
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On the complement of Wg we use the kernel estimates of Lemma 4.3.
We split a,, = > ;~,,_1 @k,m where the kernel K}, ,, of Tlay,,,] satisfies the estimate (4.7) with p = 0.
Consequently since |z" — &(y,2")| = |y" — S(z,y")| we have

(6.7) /Wv [T fo(@)|de S 4756527 || folly  if 4%0g > 1.
Q
From the gradient estimates in (4.8) and by using the cancellation property of the atom fo we get

(6.8) / (T fo(0)lde < 44602 |Ifolly  if 46 < 1,

and the asserted H* — L! bound follows from (6.6), (6.7) and (6.8). O

Corollary 6.5. Suppose that 0 < p < (d—{€)/2 and o > 2p. Then T € TP~ is bounded on LT and

d—£
bounded on L v .

Proof. We shall prove the LT boundedness; by §2.3 this also implies the L7 boundedness.
Let a € S7~7 and let a,, be as in (6.5). Define

2 (2,9, 7,€) = (2,9, 7, ) (1 + |72 + [¢[*) ot tmzmn/2 (1 4 jg2)(emoolize)mans)/2

where o¢ = #:gp(g —2p), 01 =d—1{, po=0and p; = (d—¢)/2. Then a9 = a, for 6 =2p/(d —0).
For Re(z) = 0 the symbol a,, . belongs to S?°:7° and for Re(z) = 1 it belongs to S#*°*. By Lemma 6.3
and Lemma 6.4 the operator T [ay, -] is bounded from H' to L', with norm (1 + m)2="7° if Re(z) = 0.
By Lemma 6.1 and Lemma 6.2 it is bounded on L? with norm O(1) if Re(z) = 1. By interpolation we find
that 7 [a,] is bounded on L7757 with norm O((1+m)2=me0 (=) = O((1 +m)2~"™=20)). The assertion
follows by summing in m. O

7. LP — L9 estimates for Fourier integral operators

We begin by giving a different formulation of parts 1.2.1 and 1.2.2 of Theorem 1.2. Suppose that
0<p<(d—-10/2and 2p < 0 < d—{. Then statement 1.2.1 of Theorem 1.2 says that T' € ZF~—°
maps LP — L7 if (1/p,1/q) belongs to the closed trapezoid with corners (7%, %), (d;ff, d;ff),
(l/pl%av l/qP70)7 (l/q;mrv l/plp,a) where

1 d-t-p  (o0-=2p)
Ppo  d—1 (d+0)(d—10)
1 _d-=l—p  (0—2p)d

Go  d—1 (d+0)(d—10)

(7.1)

Observe that
1 1

1.
2 Pt
and if
d—1{ d—10—2
(7.3) p1 =0, o1=(0-2p) _a-t=2p

d—(—2p" T d—¢
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then 2p < o0 < d — ¢ implies 0 < 01 < d — ¢ and we compute that

(7.4) (1= ) (—— ) 4 () = (2,

= , .
Ppo,o0 dpo,o0 Po1,01 dp1,01 Pp,o 4p,0

Therefore, one would like to prove Theorem 1.2 by interpolation from an LP* — L9 result for operators
in 79791 (already proved only for the case of weakly singular Radon transforms) and an L? result for

operators in I, Unfortunately, operators in the latter class may fail to be bounded on L?; this
somewhat complicates the interpolation argument.

Performing a finite finite conic partition of unity in the 7 variables we may assume that
supp a C {(2,y,7,€) : Jo| + Jy| < &', |7| +[¢] > 2MH0 | L — 9] < e+ [r| 1],

for some given unit vector 9 in R?, and M is chosen as in §5.

We shall now set up the various interpolation arguments. We fix p and o and use the abbreviation
(p, q) = (pp707qP,0)7 (pivqi) = (ppz',amqpi,mr)v i=1,2.

We may split T = Trro + Tpspo where Trro corresponds to a symbol which is supported where
|T|Y/2 > |€]/2 4+ 2M+5 and Tpspo corresponds to a symbol supported in the complementary region. Thus
Tpspo = T[b] where b vanishes if |7|*/2 > 2|¢| + 10 . Let

Wo€7) = (L [r[ o gt /2(1 . g2y (o monioe) )2

and b, (z,y,7,&) = blx,y,7,§)W.(€,7), so that Wy = 1. By Lemma 6.1 the operator 7[b.] is bounded
on L? if Re(z) = 0 and by Proposition 4.4 it is bounded from LP* to L% if Re(z) = 1; all bounds are of
admissible growth in z. Thus Tpspo maps LP to L? by analytic interpolation.

Now we consider Trro = T [a] where a vanishes if |7]'/? < max{2M[¢|/2}. We first split off another
operator which behaves like Tpspo. Let a, = aW, and ay m,; = Bg,ma, where [ ,, is asin (4.5). Also let

ak7m,j72(x7y777 5) = a’/ﬂ7m,2(x7y777 5)C(2J|xl - y’|)
ak,m,z(xvvav f) = ak,myz(xvvav g)C0(2k|x, - y,|)

Let
Vs,z = Z T[fdlmkfs,z]

k>s

By Lemma 6.2 (i), with the choice m(k) = k — s, the operator V; . is bounded on L?, uniformly in s,
if Re(z) = 0. By Lemma 4.5 it is bounded from LP* — L9 if Rez = 1; the bound is O(2=5(¢=¢t=o1)); all
bounds are admissible in z. Interpolating we see that V, ¢ maps L? — L¢ with norm O(25(¢~f~o1)0) =
0(275(4=4=9)): hence >k T lak,m] maps LP to L4

It remains to estimate the operator >, 3,4 2 i<k T lakm,2]. We wish to use an angular
Littlewood-Paley decomposition as in the proof of Proposition 5.3. Given a unit vector v in R we
make an angular localization in ' — ¢'. By employing a finite partition of unity it then suffices to bound

Dok>0 2am<k Zj<k Tlak,m,j,2] where

N ' — yl

Xk,m,j,2 (Iv Y, 7, f) = Ak,m,j,z (.ZE, Y, T, f)CO (5 5|w - U|)

We choose u as in (5.6) and perform the change of variable w — (w',w" + F(w;u)) = Q(w) in §2.2, and
define Qh(z) = h(Q(z)).
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As a result we have to show the L? — L? bound for the operator
(7.5) YD AT ki =YD Timy
k>0 m<k j<k k>0 m<k j<k

which has kernel

Z Z Z// ei[(q—’ylr,g(r,y’)>+<z’,y’7£>1&k7m’j7z(gj7y,T, 5) def

k>0 m<k j<k

where <U, gx’ (.7], xl)> = <U, gy’ (Iv II)> =0 and ahm,j,z(xv Yy, 7, f) = ak7m7j7z(Q(x)7 Q(y)v T, f) g(l’)/g(UJ), and
g is smooth and positive.

We now use a Littlewood-Paley operators Ly, defined by L, = 2?274 w(47F*%D"|) and also the angular
the Littlewood-Paley operator Py ; defined in (5.8). Let

Trym,j = Tl m,j0]-

We split
S Temi= Y LiTomile+ > (I = Li)TemsLi+ Y Temy (I — Li)
k,m,j k,m,j k,m,j k,m,j
and then
> LiThmiLe = I+ 1) + (IIT+IV) + (V + V)
k,m,j
where

I+11=[Y"+ > 1LkPu;Tm;PijLln
k,m,j  k,m,j
m<j  m>)
III+1IV =Y + > L&l = P j)Thomj Py L
k,m,j  k,m,j
m<j  m>)
V+VI=[> + > |LiTem (I — Pij)Li.

ksm,j  k,m,j
m<j  m>j

We then split I =) ., I by linking m = j — s for s > 0 and prove bounds for the expressions I, which
decay in s. Similarly we split IT setting j = m — s. The expressions I11,IV,V,VI are split into a double
series depending on nonnegative parameters r, s; we prove then decay in r;s. Weset j =k—r,m =k—r—s
when estimating I/ and V and j = k —r — s, m = k — r when estimating IV and VI. In the following
proposition we state the relevant estimates for the pieces.

Proposition 7.1. Let 0 < p < (d—0)/2 and 2p < 0 < d— L and let p = ppo, ¢ = Qp,o. There is
0 =0d(p,0) > 0 so that the following estimates hold.

(i) For s >0
(7.6) H > Z LkPk,jﬁ,j—sJPkijk‘ g 27
k>ss<j<k
(i) For s >0
(77) H Z Z LkPk,m—sE,m,m—st,m—st‘ Lb—sLa s 2_36

k>s s<m<k
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(iii) For s >0, r >0,

7.8 H Li(T = Pos ) TorsprPh "*TL‘H < o-(r+e)3
( ) lc>Zs+r k( o )ﬂ7k . ok F Lr—La ™

7.9 H L. T e s ke I — P. - L‘ < 27(r+s)6.

( ) ;é; A7ZJ, k ( k,k ) k Lospa N

(iv) For s >0, r >0,

. _ - - . - . < —r—s

(7.10) H Z Li(I PI»J»frfs)77»7h7r,kfrfspk7h7rsth‘ Loope 2
k>s+r

7.11 H LiTh kv heres (] — Pp oy Lq‘ < 97,

(7.11) g ki k—r —r—s( e k—r—s )Lk I

(v) For j <k, m <k
(7.12) I( = L) Thm s Lill Lo sze S 27°
(7.13) 1T (I = Ll e S 275,

Taking Proposition 7.1 for granted we can complete the

Proof of Theorem 1.2. Let p,, and ¢, , be as in (7.1). A combination of the estimates in Proposition
7.1 shows that the operator in (7.5) is bounded from LP».= to L% . Together with the discussion preceding
(7.5) this yields the LPr-v — L%.v bound of the operator 7 [a] where a € S?~7. If we apply this to the
adjoint operator we obtain the L%.» — LP». bound. If p > 0 we interpolate with the L? — LP estimate in
§6, and if p = 0 we interpolate instead with the H' — L! bound in §6. This yields the proof of statements
1.2.1 and 1.2.2. Statements 1.2.4 and 1.2.3 have already been proved in §4 and §5, respectively. [

We now give a sketch of the

Proof of Proposition 7.1.
We begin by estimating the main terms (7.6), (7.7) and use
Lemma 7.2. Let Rt be as in (1.12) and let Re(z) = 1. Then
| T, f ()] S min{207m@=Ema) == QR71 Q[ f])

where M denotes the strong mazimal function.

Proof. This follows from the kernel estimates (4.7) in a straightforward way. O

Proof of (7.6), (7.7). By Theorem 5.1 we know that R?* maps LP! to L% and so does RIQRILO L.
Arguing as in the proof of Lemma 5.5, by the Fefferman-Stein and Marcinkiewicz-Zygmund theorems we
therefore have the vector-valued inequality

(S sy |, < NS,

We apply the L9* — L% and LP* — LP' Littlewood-Paley inequalities for the Littlewood-Paley decompo-
sitions {Ly Py ;};» and Lemma 7.2 and obtain

(7.14) HZ Z LkPk,jEZ,j—s,ijLk‘

k>ss<j<k

S 27307 if Re(z) = 1.
LP1— L1
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By Lemma 6.2 and the almost orthogonality of the Littlewood-Paley operators

(7.15) H > LkPk,jEZ;j—s,ij,ij‘

k>s s<j<k

<1 ifRe(z) =0.

L2—r2 ™~

(7.14) and (7.15) prove (7.6) by interpolation and (7.7) is proved in the same way.

Proof of (7.8), (7.9), (7.10), (7.11). We analyze the kernel of Ly (I — Py ;)T{,, ; which is given by

kym,j

[ J[[[ ersanat e, oot h 7, do arrdg dea

Z/)(xvt7 h‘”?yv )‘777”77-7 5) = —tA — <h”7w”> + <T7 y” - g(x, + tU,CC” + hl,vy,» + <33’ +tu— y’7§>

where

and

’)’Ig7m,j7z(337 tv huv Yy, A 77” T, 5)
M

Z < k+z|nu| Z (1 _ Z C(272k+j+i2|/\|))ak’m7]_’2(xl —l—tu,x" +h”,y,7’, 6).

11—74 ’iz:—M

Arguing as in §5 we first integrate by parts with respect to t. This yields the pointwise estimate

9(2j—2k) N> / 22hJ 22kt
(14 22k=3t)N (1 + 22F|p"")N
om(d—{—o) 92kt
x x;(@" +tu—1y') dtdn'

(L+2ma" +tu —y' )N (1 4+ 22k|y" — S(a' + tu, 2" + h",y")|) M

here N> > Ni, N and y; is the characteristic function of Uy £ [27971,277F1]. A somewhat lengthy but
straightforward calculation similar to the one for the term £ in §5 shows that for s < j < k

\Lk(I = P j)Ti s 5 f (@) 5/4j_k2_s(d_e_"1)(| =y +1y" = S, g7 f(y)ldy, Re(z) =

if |#| < e and better (trivial) decay estimates for |z| > .

By using the LP* — L% mapping property of the standard fractional integral operator and its vector-
valued extension, together with the L? inequalities for the Littlewood-Paley operator defined by Ly, (or Ly,
with Ly Ly = L) we obtain the estimate

< 2—7“2—.9(11—6—0')7 Re(z) _

Lr1 a1 ™

H Z Lk(I_Pchfr)Ez,kfrfs,kfrphkfrl/k‘
k>s+r

By Lemma 6.2, 7,7, _,_ . is bounded on L? if Re(z) = 0, uniformly in s,  and k, and by the almost
orthogonality of the Ly (or Li) we get

<1

2,72 ™

H > LI = Peger) T jmr—s oy P Li . , Re(z)=0.

k>s+r

Analytic interpolation yields (7.8). The estimates (7.9), (7.10) and (7.11) are proved in the same way.

Proof of (7.12), (7.13). One writes out the integrals defining the kernels of the decompositions of LT}, ,, ,
and, if |l — k| > 2 one gains factors min{2~*¥ 27N} by integrating in the "-variables. O
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