
BOUNDS FOR SINGULAR FRACTIONAL INTEGRALSAND RELATED FOURIER INTEGRAL OPERATORSAndreas Seeger Stephen Wainger1. Introdu
tionLet 
 � e
 be open sets in Rd , I � Rd�` be an open neighborhood of the origin and let � be a 
ompa
tlysupported smooth fun
tion on 
� I ; we assume that �(�; 0) does not vanish identi
ally. For ea
h x 2 
 lett 7! �(x; t) � e
 be a regular parametrization of a submanifold Mx � e
 with 
odimension `. We assumethat �(x; t) � 
 if (x; t) 2 supp �, and that � satis�es �(x; 0) = x and depends smoothly on (x; t).We shall 
onsider the singular fra
tional integral operator (or weakly singular Radon transform) R� ,de�ned by(1.1) R�f(x) = Z �(x; t)f(�(x; t))jtj�(d�`��) dt;under suitable \
urvature" assumptions on the singular support and the wavefront sets of the distributionkernel of the integral operator.To formulate these assumptions we shall work with a submanifold M of 
odimension ` in 
 � 
; sothat(1.2) � := f(x; x) : x 2 
g �M:To relate this to the operator in (1.1) we assume that �(x; t) vanishes unless jtj < Æ for small Æ and notethat the di�erential of the map (x; t) 7! 
(x; t) has maximal rank d+ `; then we takeM = f(x; y) : x 2 
; y = �(x; t) for some jtj < Æg:Moreover we assume the following standard hypotheses in the theory of Fourier integral operators:Nondegenera
y assumptions.(1:3) The natural proje
tions (x; y) 7! x and (x; y) 7! y are submersions when restri
ted to M.(1:4) The twisted normal bundle N�M0 � T �
 � T �
 is lo
ally the graph of a 
anoni
al transformation.Here N�M0 
onsists of all (x; �; y;��) where (x; y) 2 M and (�; �) 2 T �(x;y)M annihilates the tangentve
tors in T(x;y)M.Assumption (1.3) implies that the se
tionsMx = fy 2 
 : (x; y) 2 MgMy = fx 2 
 : (x; y) 2MgResear
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2 ANDREAS SEEGER STEPHEN WAINGERare immersed submanifolds of 
, of 
odimension `. We may assume thatM is given by a de�ning fun
tion(1.5) M = f(x; y) : �(x; y) = 0gwhere � is R` -valued satisfying �(x; x) = 0 so that (1.2) is satis�ed and rank �x = rank �y = ` so that(1.3) is satis�ed.Assumption (1.4) 
an be reformulated as follows. Let 	(x; y; �) = � ��(x; y). Then the assumption(1.4) on N�M0 is equivalent with(1.6) det�	xy 	x�	�y 	�� � = det� � ��xy �x�y 0 � 6= 0 for all � 2 S`�1,see [12℄; in (1.6) �x should be read as a d� ` - matrix and �y as an `� d - matrix. For ` = 1 hypothesis(1.4) is just the rotational 
urvature assumption of Phong and Stein [16℄. We note that for (1.4) to holdthe 
odimension ` has to be suÆ
iently small, and we are mainly interested in the 
ase of hypersurfa
es.Theorem 1.1. Suppose that 1 � p � q �1, 0 < � < d�` and suppose thatM satis�es the nondegenera
yassumptions (1.3), (1.4). Then R� maps Lp(
) ! Lq(e
) if and only if the following 
onditions aresatis�ed:a) (1=p; 1=q) belongs to the triangle with 
orners (0; 0), (1; 1) and ( dd+` ; `d+`).b) (1=p; 1=q) belongs to the halfplane de�ned by (d+ `)( 1p � 1q ) � �.A spe
ial translation invariant 
ase is due to M. Christ [3℄, extending earlier results by Ri

i and Stein[18℄. These authors 
onsider the translation invariant 
ase where �(x; y) = xd � yd � jx0 � y0j2 and arelated model 
ase on the Heisenberg group. For these dilation invariant examples one a
tually provesglobal results whi
h one 
ould dedu
e from lo
al ones by s
aling arguments.The weakly singular Radon transforms are spe
ial 
ases of os
illatory integrals with singular symbolsas 
onsidered by Melrose [13℄, Greenleaf and Uhlmann [11℄ and others. Let I�;��(
�
;M;�) denote the
lass of distribution kernels introdu
ed in [11℄; we denote by I�;��(
 � 
;M;�) the asso
iated 
lass ofoperators and refer for a general dis
ussion and other referen
es to previous work to [11℄.Possibly after a 
hange of variable we may lo
ally parametrizeM as a graph of an R` valued fun
tion,(1.7) y00 = S(x; y0)with y0 = (y1; : : : ; yd�`), y00 = (yd�`+1; : : : ; yd), S = (Sd�`+1; : : : ; Sd). so that(1.8) rank Sx00 = `and(1.9) det� � �Sx0y0 Sx0� �Sx00y0 Sx00 � 6= 0for all � 2 R` n f0g.We re
all from [11℄, [5℄ that a distribution kernel K belongs to I�;��(
 � 
;M;�) if it is a lo
ally�nite sum of K� , so that ea
h K� 
an be written after a 
hange of variable in 
 as an os
illatory integral(1.10) ZZRd�`�R` e{[h�;y00�S(x;y0)i+h�;x0�y0i℄a(x; y; �; �)d�d�:Here S satis�es (1.8), (1.9) and the symbol a satis�es the di�erential inequalities(1.11) j�
x;y��� ��� a(x; y; �; �)j � C�;�;
(1 + j� j+ j�j)��j�j(1 + j�j)���j�j:



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 3We refer to the 
lass of symbols satisfying (1.11) as S�;��(
 � 
;R` ;Rd�`). We shall sometimes denotethe operator with kernel (1.10) as T [a℄.It is well known that the weakly singular Radon transform as 
onsidered in Theorem 1.1 is an operatorin I0;��(
� 
;M;�) (see e.g. [11℄). Namely after an appropriate lo
alization it suÆ
es to work with(1.12) R�f(x) = Z f(y0; S(x; y0))jx0 � y0j�+`�d�(x0; S(x; y0); y0)dy0where � has small support. Then the distribution kernel is given byÆ(y00 � S(x; y0))jx0 � y0j��d+`g(x; y0)where Æ is the Dira
 measure at the origin in R` and g is smooth and 
ompa
tly supported. We expandthe Dira
 measure using the Fourier inversion formula in R` and apply the Fourier inversion formula inRd�` to the fun
tion h! jhj��d+`g(x; x0+h). As a result we 
an write the distribution kernel in the form(1.10) where the symbol a is given bya(x; y; �; �) = (2�)�d Z jw0j��d+`g(x; x0 + w0)e�{h�;w0idw0:We now formulate estimates for general operators of 
lass I�;�� . Sin
e the 
omposition of a standardpseudo-di�erential operator of order m with an operator in I�;��(
 � 
;M;�) belongs to I�+m;��(
�
;M;�) (see [5℄, [11℄) the following results yield Lpa ! Lqa+m Sobolev estimates for weakly singular Radontransforms.Theorem 1.2. Suppose that 1 � p � q � 1. Let T 2 I�;��(
 � 
;M;�), with 
ompa
tly supporteddistribution kernel, and assume that the nondegenera
y assumptions (1.3), (1.4) hold.1.2.1. Suppose 0 < � < d�`2 and 2� < � < d � `. Then T maps Lp to Lq if the following two 
onditionsare satis�ed.a) (1=p; 1=q) belongs to the 
losed triangle with 
orners ( �d�` ; �d�`), (d�`��d�` ; d�`��d�` ) and (d��d+` ; �+`d+`).b) (1=p; 1=q) belongs to the halfspa
e de�ned by (d+ `)( 1p � 1q ) � � � 2�.1.2.2. Suppose � = 0 and 0 < � < d � `. Then T maps Lp to Lq if the following two 
onditions aresatis�ed.a) (1=p; 1=q) belongs to the 
losed triangle with 
orners (0; 0), (1; 1) and ( dd+` ; `d+`), with the possibleex
eption of the points (0; 0) and (1; 1).b) (1=p; 1=q) belongs to the halfspa
e de�ned by (d+ `)( 1p � 1q ) � �.Moreover, T is bounded from the Hardy spa
e H1 to L1 and from L1 to BMO.1.2.3. Suppose �` < � < 0 and ��d�`` < � < d� `. Then T maps Lp to Lq if the following two 
onditionsare satis�ed.a) (1=p; 1=q) belongs to the pentagon with 
orners (1; 1), (0; 0), (1; �+`` ), (��` ; 0) and (d��d+` ; �+`d+`), withthe possible ex
eptions of the points (1; �+`` ), (��` ; 0).b) (1=p; 1=q) belongs to the halfspa
e de�ned by (d+ `)( 1p � 1q ) � � � 2�.1.2.4. Suppose �` < � < 0 and 0 < � � ��d�`` . Then T maps Lp to Lq if (1=p; 1=q) belongs to thequadrilateral with 
orners (1; 1), (0; 0), (1; d���`d�` ) and ( �d�` ; 0), with the possible ex
eption of the points(1; d���`d�` ) and ( �d�` ; 0).We remark that the analyti
 family of fra
tional integrals 
onsidered by Grafakos [9℄ in the translationinvariant 
ase 
an be 
onsidered as a model family of operators of 
lass I�;�� , however the L2 endpoint 
asein this family belongs to I d�`2 ;`�d but satis�es better L2 estimates than the general operator in I d�`2 ;`�d.



4 ANDREAS SEEGER STEPHEN WAINGEROperators in I0;0 are bounded on Lp for 1 < p <1, see Greenleaf and Uhlmann [11℄, and for the mainspe
ial 
ase of singular Radon transforms Phong and Stein [16℄, [17℄. The endpoint Lp ! Lp estimates forthe 
ase 2� = �, p� = (d � ` � �)=(d � `) or p0� = �=(d � `) may fail as demonstrated by Christ [4℄. It islikely that the best possible Lorentz-spa
e endpoint estimate, namely an Lp� ! Lp�;2 bound holds; a proofof this estimate in the translation-invariant 
ase was given by Tao and one of the authors [20℄.A variant of the methods in this paper has been used by the authors [21℄ to prove new Lp theorems forvariable-
oeÆ
ient maximal and singular integral operators asso
iated to families of 
urves in R2 (extendingresults in [2℄, [19℄).It is well known that at least under the assumption of nonvanishing rotational 
urvature 
ertain par-aboli
 
uto�s 
an be used to write a singular integral along a hypersurfa
e as a sum of two operators,where one of them is a pseudodi�erential operator of type (1=2; 1=2) and the other one a Fourier integraloperator, of type (1=2; 1=2). This de
omposition is due to Melrose (see [13℄, [11℄), but related argumentshad been used by Nagel, Stein and Wainger [15℄, see also Phong and Stein [17℄ for a di�erent version. Inthe 
ourse of this paper we shall make use of (variants of) all these de
ompositions.The paper is organized as follows: x2 
ontains some preparations and the dis
ussion of a 
ru
ial 
hangeof variables. x3 
ontains preliminary estimates for dyadi
 pie
es of fra
tional Radon transforms. Afterappropriate lo
alizations these are redu
ed to standard estimates for Fourier integral operators via paraboli
s
alings. In x4 we 
onsider some variants of fra
tional integrals whi
h are relevant for the estimation of thepseudodi�erential 
ontribution to operators in I�;�� when � � 0. Here we shall also see that part 1.2.4follows in a straightforward way from estimates for a 
lass for 
ertain produ
t-type fra
tional integrals. Inx5 we give the proof of Theorem 1.1. It turns out that after some 
hanges of variables angular Littlewood-Paley de
ompositions may be applied just as in the previously known translation-invariant 
ase ([3℄). Asin that 
ase a positivity argument is 
ru
ial; however the estimates for the error terms are more involved.In x5 we also bound a family of less singular positive operators whi
h dominate operators in I�;�� when� < 0; thus we 
an then give a proof of 1.2.3. Finally, in x5, we dis
uss standard examples whi
h show thsharpness of the results. In x6 we establish Lp ! Lp bounds by suitable interpolation between L2 ! L2 andHardy-spa
e estimates. x7 
ontains estimates for general operators in I0;�� and additional interpolationarguments to �nish the proof of Theorem 1.2.
2. Preliminaries2.0. Notation.2.0.1. B" will denote the open ball in Rd of radius " 
entered at the origin.2.0.2. m(D) denotes the 
onvolution operator with Fourier multiplier m(�). We split variables inRd = Rd�` � R` as x = (x0; x00) and denote by h(D00) the 
onvolution operator with Fourier multiplierh(�00).2.0.3. A fun
tion F on fz : 0 � Re(z) � 1g is 
alled of admissible growth if jF (z)j � CeAjzj for someA > 0, C � 0.2.0.4. The di�erentiability inequalities (1.11) are supposed to hold for all multiindi
es of length �M0where M0 is large, say M0 = 10100d, those multiindi
es are termed admissible. Exponents N;N0; :::; N4 inx4 and x7 are assumed to be � d+ 1 and � 1010d.2.0.5. We denote by �0 � !0 an even C10 (R) fun
tion with �0(s) = 1 for jsj � 1=2 and �0(s) = 0 forjsj � 1. Also let �(s) = �0(s=2)� �0(s), !(s) = !0(s=4)� !0(s) so that � is supported in [1=2; 2℄ and ! is



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 5supported in [1=4; 4℄; moreover �0(s) + 1Xj=1 �(2�js) = 1!0(s) + 1Xj=1 !(4�js) = 1for all s 2 R.2.0.6. For two quantities A and B we write A . B or B & A if there exists an absolute positive
onstant C so that a � Cb. We write A � B if both A . B and A & B hold.2.1 Standard assumptions. For our Fourier integrals (1.10) and for the weakly singular Radon trans-forms any 
ontribution away from the diagonal is handled by standard estimates for Fourier integraloperators, see Lemma 3.1 below. Therefore, in view of the 
ompa
t support assumption on the kernel itis suÆ
ient to prove Theorems 1.1 and 1.2 under the assumption that the kernels of our operators aresupported in a small neighborhood of a given point (P; P ) 2 �. We shall introdu
e 
oordinates that vanishat P , and assume that in these 
oordinates the kernels are supported where jxj, jyj � "10; " is 
hosen in(2.16) below.For further preparation 
hoose "0 > 0 so that in a neighborhood of the 
losure of B"0�B"0 the manifoldM is given as a graph(2.1) y00 = S(x; y0);by performing a linear transformation we 
an also assume that(2.2) Sx0(0; 0) = O`;d�`(the `� (d� `) zero-matrix).Sin
e � �M we have x00 = S(x; x0)(2.3)for all x 2 B"0 and 
onsequently Sx0(x; x0) + Sy0(x; x0) = 0(2.4) Sx0x0(x; x0) + 2Sx0y0(x; x0) + Sy0y0(x; x0) = 0(2.5) Sx00(x; x0) = I`;`(2.6)where I`;` denotes the `� ` identity matrix.We shall also assume that for some 
onstant C0 � 1(2.7) Xj�j�10100d supjxj�"0jy0j�"0 j��x;y0S(x; y0)j � C0:Moreover, by the assumption (1.9) and by (2.2) we have for some positive 
0 < 1(2.8) k(� �Sx0y0(0; 0))�1k � 
�10 ;for all unit ve
tors � 2 S`�1; here k � k denotes the Hilbert-S
hmidt norm.



6 ANDREAS SEEGER STEPHEN WAINGER2.2 Straightening near the diagonal.We now introdu
e a family of 
hanges of variables, depending on unit ve
tors u in Rd�`w 7! Q(w;u) := (w0; w00 + F (w;u))so that F 0w(0;u) = 0(2.9.1) F (0;u) = 0(2.9.2)and so that(2.10) y00 = S(x; y0) () z00 = eS(w; z0;u)if y = Q(z;u); x = Q(w;u)and(2.11) hu;rw0ieSi(w;w0;u) = 0; i = d� `+ 1; : : : ; d:To des
ribe this 
hange of variables let B = B(u) be a rotation on Rd�` depending smoothly on u su
hthat Be1 = u (with e1 = (1; 0; : : : ; 0)). We de�ne an R` -valued fun
tion G = G(� ;u) by requiring that Gsatis�es the following system of ordinary di�erential equations, with respe
t to the variable w1 and initialdata depending on the parameters w2; : : : ; wd:�G�w1 (w) = hu; Sy0i(Bw0; w00 +G(w); Bw0)G(0; w2; : : : ; wd) = 0Set F (w) � F (w;u) = G(B�1w0; w00;u);then F satis�es (2.9) and(2.12) hu;rw0iF (w) = hu; Sy0(w0; w00 + F (w); w0)i:For the following dis
ussion �x u. Sin
e the fun
tions S and eS are related by (2.10) we have(2.13) eS(w; z0) + F (z0; eS(w; z)) = S(w0; w00 + F (w); z0):Denote by Du = hu;rz0i the dire
tional derivative with respe
t to u. Di�erentiation of (2.13) yieldsDu eS(w; z0) +DuF (z0; eS(w; z)) + Fz00(z0; eS(w; z))Du eS(w; z) = hu;ry0iS(w0; w00 + F (w); z0)and by (2.12) we obtainDu eS(w; z0) + hu; Sy0(z0; eS(w; z0) + F (z0; eS(w; z0)); z0)i+ Fz00(z0; eS(w; z0))Du eS(w; z0)= hu; Sy0(w0; w00 + F (w); z0)i:Now we evaluate for w = z and take into a

ount that eS(z; z0) = z00 . This yields(I + Fz00(z))Du eS(z; z0) = 0



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 7Sin
e Fz00(0) = 0 by (2.9), we obtain hu;rz0ieS(z; z0) = 0 in a neighborhood of (0; 0), and sin
e alsoeSw0(w;w0) + eSz0(w;w0) = 0 this yields (2.11).In view of (2.9) we may �x a number Æ1 � "0 so that(2.14) BÆ=2 � Q(w; u)BÆ � B2Æ for Æ � Æ1; w 2 BÆ:Let(2.15) C1 = supj�j�10100d supjwj�Æ1 jF (�)(w)j + C0where C0 is as in (2.7). We may assume throughout this paper that the 
uto� fun
tion � in (1.12) satis�es(2.16) supp � � f(x; y0) : jxj+ jy0j � "g where 0 < " < (100dC1=
0)�1Æ1:Moreover the distribution kernels of the the Fourier integrals de�ned by (1.10) are assumed to be supportedin B"10 �B"10 .Note also that for jxj; jyj � " kSx0k+ kSx00 � I`;`k � "9 � Æ1(2.17) 

Fw

� "9 � Æ1:(2.18)2.3. Adjoint operators. Suppose that M is given as a graph (1.7)with (1.8) and the symbol has small(x; y) support then we may solve the equation y00 = S(x; y0) in x00 so that y00 = S(x0;S(y; x0); y0) and(2.19) y00 � S(x0; x00; y0) = C(x; y)(x00 �S(y0; y00; x0))in a neighborhood of M, with C(x; y) is an invertible ` � ` matrix depending smoothly on (x; y). If inthe os
illatory integral (1.10) we make a linear 
hange in the � -variables, e� = C(x; y)T � , then we see that(1.10) 
an be rewritten as a linear 
ombination of integrals with phase fun
tion h�; x00 � S(y; x0)i. Thisshows that for an operator in I�;��(
 � 
;M;�) the adjoint operator belongs to I�;��(
 � 
;M�;�)where M� = f(x; y) : (y; x) 2Mg (and M� satis�es (1.3), (1.4)).3. Nonsingular Radon transforms and s
alingWe �rst re
all a well-known result on Lp ! Lq estimates for Fourier integral operators asso
iated to a
anoni
al graph. These estimates take 
are of 
ontributions of the kernels away from the diagonal. In theformulation of this Lemma the order of a Fourier integral opertator is as in the standard theory of Fourierintegral operators; thus the standard Radon-type operators is of order �(d� `)=2.Lemma 3.1. Suppose �` < � < d�`2 .Let T be a Fourier integral operator of order �� d�`2 asso
iated to a lo
al 
anoni
al graph C � T �
nf0g�T �
 n f0g. Suppose that the restri
tions C of the proje
tions (x; y) ! x and (x; y) ! y have di�erentialswith maximal rank d and that the proje
tion C ! 
 � 
 has a di�erential with 
onstant rank � 2d � `.Suppose that the distribution kernel of T has 
ompa
t support.(i) If � > 0 then T maps Lp to Lq if (1=p; 1=q) belongs to the 
losed triangle with 
orners ( �d�` ; �d�`),(d�`��d�` ; d�`��d�` ) and (d��d+` ; �+`d+` ).(ii) If � = 0 then T maps Lp to Lq if (1=p; 1=q) belongs to the 
losed triangle with 
orners (0; 0),(1; 1) and ( dd+` ; `d+` ), with the possible ex
eption of the 
orners (0; 0) and (1; 1); then an H1 ! H1 orL1 ! BMO bound holds.



8 ANDREAS SEEGER STEPHEN WAINGER(iii) If �` < � < 0 then T maps Lp to Lq if (1=p; 1=q) belongs to the pentagon with 
orners (1; 1),(0; 0), (1; `+�` ), (��` ; 0) and (d��d+` ; �+`d+`), with the possible ex
eptions of the points (1; `+�� ), (��̀ ; 0).Sket
h of the argument. The main Lp ! Lp0 estimates are essentially proved in [1℄. We sket
h the argument.Consider �rst the main endpoint L d+`d�� ! L d+`�+` estimate. In view of the 
onstant rank assumptions on theproje
tion of C to the base spa
e we may after appropriate lo
alization and 
hoi
e of 
oordinates write thekernel as the sum Pk�1Kk(x; y) and a C10 fun
tion; hereKk(x; y) = 2k� Z eih�;y00�S(x;y0)iak(x; y; �)d�where the integral is extended over a 
oni
 open set of R` , S is as in the introdu
tion, the symbols ak areof order 0 with uniform bounds in k � 1, and ak(x; y; �) = 0 if j�j =2 (2k�1; 2k+1).Let Tk be the operator with kernel Kk. Standard L2 theory (see [12℄, [22℄) shows that Tk is bounded onL2, with norm O(2k(�� d�`2 )). Clearly jKk(x; y)j . 2k(�+`). Thus Tk maps L1 to L1 with norm . 2k(�+`).Interpolation yields that Tk maps L d+`d�� to L d+`�+` with bounds uniform in k. Sin
e we assume that the
anoni
al relation C does not meet f0g � T �
 and T �
 � f0g one 
an use standard integration by partsarguments ([12℄) and Littlewood-Paley theory to put the pie
es together and one obtains the desiredL d+`d�� ! L d+`�+` estimate, 
f. also [1℄. For the endpoint Lp ! Lp (or H1 ! L1 estimate) and more referen
essee [22, 
h. IX℄.Finally assume �` < � < 0. Then an integration by parts argument shows thatjKk(x; y)j . 2k(`+�)(1 + 2kjy00 � S(x; y0)j)�Nand therefore the sum in k is bounded by jy00 � S(x; y0)j�(�+`). In view of the 
ompa
t support of thekernel we see that K(x; �) and K(�; y) are uniformly in Weak-L ``+� . Thus the operator maps L1 to Weak-L ``+� . A similar argument applies to the adjoint operator. Now one uses the Mar
inkiewi
z interpolationto interpolate with the endpoint L d+`d�� ! L �+`d+` estimate and further interpolation with the trivial L1 andL1 estimates to 
on
lude. �Let � 2 C10 (Rd �Rd ) be a nonnegative fun
tion. Now let �` < � � 0, 0 < � < d� `. If also � < 0 wede�ne the distribution kernel G�;� by(3.1) G�;�(x; y) = �(x; y)jx0 � y0j�(d�`��)
`;�jy00 � S(x; y0)j�(�+`) if � ` < � < 0where 
`;� = 2���`=2�( `+�2 )�(��2 )so that the Fourier transform on R` of 
`;�j � j�(`+�) is j�j�, see [8℄. De�ne G0;� = lim�!0�G�;� where thelimit is taken in the sense of distributions; 
learly(3.2) G0;�(x; y) = Æ(y00 � S(x; y0))jx0 � y0j�(d�`��)�(x; y):De�ne the operator R�;� by(3.3) R�;�f(x) = hG�;�(x; �); fiso that for � = 0 we re
over the weakly singular Radon transform. We wish to apply Lemma 3.1 to dyadi
pie
es lo
alized in x0 � y0, after a suitable res
aling. Therefore we de
ompose dyadi
ally(3.4) R�;� =Xj (R�;�j + E�;�j )



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 9with R�;�j f(x) = 2j(d�`��)hb�;�j (x; �); fi(3.4) E�;�j f(x) = 2j(d�`��)hh�;�j (x; �); fi(3.5)where(3.6) b�;�j (x; y) = 2�j(d�`��)�(2j jx0 � y0j)�0( jy00�S(x;y0)jjx0�y0j2 )G�;�(x; y)and(3.7) h�;�j (x; y) = 2�j(d�`��)�(2j jx0 � y0j)(1� �0( jy00�S(x;y0)jjx0�y0j2 ))G�;�(x; y):Note that this implies h0;� � 0.Proposition 3.2. Let 0 < � < d� `, �` < � � 0 and let R�;�j be as in (3.1).(i) Suppose that (1=p; 1=q) belongs to the triangle with 
orners (0; 0), (1; 1) and ( dd+` ; `d+`). ThenkR0;�j fkq . 2j[(d+`)( 1p� 1q )��℄kfkp:(ii) Suppose that �` < � < 0. Then the inequalitykR�;�j fkq . 2j[(d+`)( 1p� 1q )+2���℄kfkpholds if (1=p; 1=q) belongs to the pentagon with 
orners (1; 1), (0; 0), (1; `+�` ), (��` ; 0) and (d��d+` ; �+`d+` ), withthe possible ex
eption of the points (1; `+�` ), (��̀ ; 0). ThenProof. Let Æ > 0 and(3.8) B(a; Æ) = fy : jy0 � a0j � Æ; jy00 � a00 � hSy0(a; a0); y0 � a0ij � Æ2g:A suÆ
iently small neighborhood U of the origin is then made into a spa
e of homogeneous spa
e with theballs B(x; Æ) (see [16℄, [22℄ at least for the 
ase ` = 1), and for suÆ
iently large j we 
an 
over U with afamily of balls B(x� ; 2�j) whi
h have bounded overlap.Fix j and observe that if f is supported in B(x� ; 2�j) then Rjf is supported in B(x� ; C2�j) for a �xedC. Therefore in order to prove the asserted inequality it suÆ
es to verify it under the assumption that fis supported in a ball B(a; Æ) where a 2 
 is near the origin.Fix a. Then we perform an aÆne 
hange of variables, so that in the new 
oordinates we 
an write R�;�jas in (3.4), (3.6) with S(x; y1) repla
ed by s(x; y1) satisfying(3.9) sx0(a; a0) = 0; sy0(a; a0) = 0:(3.9) implies that the ball B(a; 2�j) is 
ontained infy : jy0 � a0j � A2�j ; jy00 � a00j � A2�2jgfor suitable A. Moreover we also see the rotational 
urvature in (1.9) at (a; a0) is given by det � � sx0y0(a; a0)sin
e we still have sx00(a; a0) = I`;`, 
f. (2.6).We now perform a s
aling argument and writeR�;�j f(a0 + 2�jv0; a00 + 2�2jv00) = 2j(2���) eR�;�j fj(v)



10 ANDREAS SEEGER STEPHEN WAINGERwhere eR�;�j g(v) = heb�;�j (v; �); gi;fj(w0; w00) = f(a0 + 2�jw0; a00 + 2�2jw00);Sj;a(v; w0) = 22j(�a00 + s(a0 + 2�jv0; a00 + 2�2jv00; a0 + 2�jw0));eb�;�j (v; w) = b�;�j (a0 + 2�jv0; a00 + 2�2jv00; a0 + 2�jw0; a00 + 2�2jw00):In view of s(a; a0) = a00 and sx0(a; a0) = 0 we 
he
k that the derivatives of Sj;a are uniformly bounded (ina �xed neighborhood of (0; 0), whi
h 
an be 
hosen independently of j and a) and also that the rotational
urvature is bounded below.The res
aled operators eR�;�j are standard Fourier integral operators, to whi
h Lemma 3.1 (ii), (iii) 
anbe applied, the resulting Lp ! Lq bounds are uniform in j, and in a. We apply Lemma 3.1 with therelevant 
hoi
e of p and q and it follows that2j d+`q kR�;�j fkq = 2j(2���)k eRjfjkq . 2j(2���)kfjkp . 2j(2���)2j d+`p kfkpwhi
h proves the Proposition. �For the estimation of the error term involving the terms E�;�j see Proposition 4.2 below.4. Regular and produ
t type fra
tional integralsIn this se
tion we study nonisotropi
 and produ
t type pseudodi�erential operators, whi
h 
ome up aslow frequen
y 
ontributions to operators in I�;�� ; in parti
ular we prove Lp ! Lq estimates for the errorterm in (3.4). We re
all a sharp version of Young's inequality (see Theorem (6.35) in [6℄) whi
h states thatthe 
onditions 1 < p < q <1 and(4.1) supx kK(x; �)kLr;1 + supy kK(�; y)kLr;1 <1; 1r = 1� 1p + 1q ;imply that the integral operator with kernel K(x; y) is bounded from Lp ! Lq.Lemma 4.1. Suppose 1 < p < q <1: De�neK�;�1 (x; y) = �(x; y)jx0 � y0j��d+`jy00 � S(x; y0)j���`(4.2) K�;�2 (x; y) = �(x; y)(jx0 � y0j+ jy00 � S(x; y0)j1=2)��2��d�`(4.3)and(4.4) K�;�3 (x; y) = � �(x; y)jx0 � y0j��d+`jy00 � S(x; y0)j���` if jx0 � y0j2 � 10jy00 � S(x; y0)j0 if jx0 � y0j2 � 10jy00 � S(x; y0)j :(i) Assume 0 < � < d� `, �` < � < 0, (d � `)(1=p� 1=q) � �, `(1=p� 1=q) � ��. Then the integraloperator with kernel K�;�1 maps Lp to Lq.(ii) Assume �` < � � 0, 0 < � < d � ` and (d + `)(1=p� 1=q) � � � 2�. Then the integral operatorwith kernel K�;�2 maps Lp to Lq.(iii) Assume �` < � � 0, ��(d� `)=` < � < d� ` and (d+ `)(1=p� 1=q) � � � 2�. Then the integraloperator with kernel K�;�3 maps Lp to Lq.Proof. We �rst 
onsider (i). Let Jx0;y0 denote the integral operator a
ting on fun
tions in R` , with kernelJx0;y0(x00; y00) = �(x0; x00; y0; y00)jy00 � S(x; y0)j���`:



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 11If `(1=p�1=q) � �� then supx00 kJx0;y0(x00; �)kLr;1 � C for 1=r = 1�1=p+1=q, uniformly in x0; y0. Sin
e thequantities jy00�S(x; y0)j and jx00�S(y; x0)j are 
omparable (
f. x2.3) we also have supy00 kJx0;y0(�; y00)kLr;1 �C. Thus by the sharp form of Young's inequality stated above the 
ondition `(1=p�1=q) � �� implies thatJx0;y0 maps Lp(R` ) to Lq(R` ), with bounds independent of x0; y0. Likewise, sin
e (d� `)(1=p�1=q) � � theintegral operator with kernel e�(x0; y0)jx0�y0j��d+` maps Lp(Rd�`) to Lq(Rd�`) if e� is 
ompa
tly supported.Thus by Minkowski's inequality (if T �;�1 is the integral operator with kernel K�;�1 )kT �;�1 fkq � �Z h Z e�(x0; y0)jx0 � y0j��d+`

Jx0;y0 [f(y0; �)℄

Lq(R`)dy0iqdx0�1=q. �Z h Z e�(x0; y0)jx0 � y0j��d+`kf(y0; �)kLp(R`)dy0iqdx0�1=q. �Z kf(x0; �)kpLp(R`)dx0�1=pand hen
e T �;�1 is bounded from Lp(Rd) to Lq(Rd ). This proves (i).(ii) is proved by 
he
king dire
tly the 
ondition (4.1) for r � d+`d+`+2��� ; the 
al
ulation is standard andtherefore omitted.It remains to 
onsider the operator with kernel K�;�3 . We now �x x and prove kK�;�3 (x; �)kLr;1 � Cwith C independent of x; here again r = d+`d+`+2��� . Let v0 = y0 � x0 and v00 = y00 � S(x; y0).For � > 0 let 
(�) = f(v0; v00) : jv0j��d+`jv00j���` > �; jv0j2 � 10jv00j1=2; jv00j � C2g:We have to show that the set 
(�) has measure O(��r). If v 2 
(�) then jv0j2 � 10jv00j �10�� 1�+` jv0j�d�`���+` and this implies jv0j2+ d�`��`+� . �� 1�+` or jv0j . �� 1d+`+2��� . Thusj
(�)j . Zjv0j.�� 1d+`+2��� �� `�+` jv0j� d�`���+` `dv0Now the 
ondition ��d�`` < � is equivalent with �d�`���+` ` > �(d� `) and therefore one 
an verifyj
(�)j � C�� ``+��� 1d+`+2��� (d�`� (d�`��)``+� ) = C�� d+`d+`+2���and thus supx kK�;�3 (x; �)kLr;1 < 1. The veri�
ation of the 
ondition supy kK�;�3 (�; y)kLr;1 < 1 issimilar. �Proposition 4.2. Suppose that 1 < p � q < 1, �` < � < 0 and 0 < � < d � `. Let E�;� = Pj E�;�j(as de�ned in (3.5)) Then E�;� is bounded from Lp to Lq if either one of the following two 
onditions issatis�ed.(i) ��d�`` < � < d� ` and (d+ `)(1=p� 1=q) � � � 2�.(ii) 0 < � � ��d�`` and (d� `)(1=p� 1=q) � �.Proof. The kernel of E�;� 
an be estimated by both K�;�1 and K�;�3 in Lemma 4.1. For (i) apply theestimate for the integral operator with kernel K�;�3 . To prove (ii) from Lemma 4.1 observe that inequality`(1=p� 1=q) � �� is implied by 0 < � � ��d�`` and (d� `)(1=p� 1=q) � �. �We shall now look at the basi
 dyadi
 pie
es in de
ompositions of operators in I�;�� . Let(4.5) �k;m(x; y; �; �) =8>>><>>>: !(2�2kj� j)�(2�mj�j) if k > 0;m > 0;!0(j� j)�(2�mj�j) if m > 0; k = 0;!(2�2kj� j)�0(j�j) if k > 0;m = 0;!0(j� j)�0(j�j) if k = m = 0:



12 ANDREAS SEEGER STEPHEN WAINGERSuppose a 2 S�;��. Let(4.6) Kk;m(x; y) = ZZRd�`�R` e{[h�;y00�S(x;y0)i+h�;x0�y0i℄(a�k;m)(x; y; �; �)d�d�:Let Tk;m be the integral operator with kernel Kk;m(x; y).Lemma 4.3. If a 2 S�;�� then(i)(4.7) jKk;m(x; y)j . 22k��m� 22k`(1 + 22kjy00 � S(x; y0)j)N 2m(d�`)(1 + 2mjx0 � y0j)N ;moreover(4.8) jrKk;m(x; y)j . maxf4k; 2mg22k��m� 22k`(1 + 22kjy00 � S(x; y0)j)N 2m(d�`)(1 + 2mjx0 � y0j)N :(ii) Let K be the S
hwartz kernel of an operator in I�;�� given by (1.10), and assume that �` < � < 0,0 < � < d� `. Then K satis�esjK(x; y)j . jy00 � S(x; y0)j���`jx0 � y0j��d+`:Proof. (i) follows by integration by parts. (ii) is dedu
ed from (i) by summing geometri
 series. �Proof of Theorem 1.2.4. Immediate from Lemma 4.3 (ii) and Lemma 4.1. �We shall now look at a general operator in I�;�� and 
onsider the 
ontribution whi
h gives rise to anonisotropi
 pseudo-di�erential operator .Proposition 4.4. Let a 2 S�;�� and suppose that 1 < p � q < 1. Suppose that �` < � � 0 and that��d�`` < � < d� ` and (d+ `)(1=p� 1=q) � �� 2�. Then the operator Pk�0Pm�k Tk;m is bounded fromLp to Lq.Proof. We use the kernel estimates (4.7) and sum. We �nd that the kernel P (x; y) of Pk�0Pm�k Tk;msatis�es the estimatejP (x; y)j . � jx0 � y0j��2��d�` if jy00 � S(x; y)j1=2 . jx0 � y0jjx0 � y0j`�d+�jy00 � S(x; y0)j���` if jy00 � S(x; y)j1=2 & jx0 � y0j :Thus jP (x; y)j . K�;�2 (x; y) +K�;�3 (x; y)and the assertion follows from Lemma 4.1. �For later use we also write down a similar estimate for an operator with lo
alization in jx0 � y0j.Lemma 4.5. Let a 2 S0;�� and Kk;m as in (4.6), with � = 0. Denote by Wk;m the operator with kernelKk;m(x; y)�0(2k(jx0 � y0j)). Suppose 1 < p � q <1 and (d + `)(1=p� 1=q) � �, 0 < � < d� `. Then fors > 0 the operator Pk>sWk;k�s is bounded from from Lp to Lq, with operator norm O(2�s(d�`��)).Proof. This follows in a straightforward manner from (4.7) and Lemma 4.1. We have the estimatejKk;k�s(x; y)j . 2k(d+`��)2�s(d�`��)(1 + 22kjy00 � S(x; y0)j+ 2k�sjx0 � y0j)N j�0(2k(x0 � y0))j;here we 
hooseN > (d+`��). If jy00�S(x; y0)j � jx0�y0j � 2�k we simply dominate by 2k(d+`��)2�s(d�`��)whi
h is in the present 
ase 
ontrolled by 2�s(d�`��)K�;�2 (x; y) (
f. (4.3)).If jy00 � S(x; y0)j � jx0 � y0j � 2�k then jKk;k�s(x; y)j . 2�s(d�`��)jy00 � S(x; y0)j�(d+`��)=2 and inthe 
ase under 
onsideration this is also 
ontrolled by 2�s(d�`��)K�;�2 (x; y). Sin
e for �xed (x; y) the sumPk>sKk;k�s(x; y) 
ontains at most three terms, we see that the assertion follows from Lemma 4.1. �



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 135. Weakly singular Radon transforms and some variantsIn this se
tion we give a proof of Theorem 1 and part 1.2.3 of Theorem 1.2. We �rst introdu
e anadditional angular lo
alization in the angular variable.Let v 2 Rd�` be a unit ve
tor. Let�(x; y) = �(x; y)�0�"�10�� x0 � y0jx0 � y0j � v����0� jy00 � S(x; y0)jjx0 � y0j2 ��j(x; y) = �(x; y)�(2j(jx0 � y0j)here � is a nonnegative smooth fun
tion supported where jxj+ jy0j � "10 (see (2.16)). Thus(5.1) supp � � �(x; y) : �� x0 � y0jx0 � y0j � v��� "10; jxj � "10; jyj � "10; jy00 � S(x; y0)j � jx0 � y0j2	:Let G�;� be as in (3.1) and de�ne(5.2) R�;�f(x) = hG�;�(x; �)�(x; �); fi:The operator R0;� introdu
ed in x3 is a �nite sum of operators of type R0;� (with suitable 
hoi
es of �and v). Moreover, for � < 0 we re
over the operators R�;� modulo error terms whi
h are already estimatedby Proposition 4.2. The 
ase � = 0 of the following result implies the assertion of Theorem 1.1.Theorem 5.1. Let 1 � p � q �1.(i) Suppose that (1=p; 1=q) belongs to the interse
tion of the halfspa
e de�ned by (d + `)( 1p � 1q ) � �with the triangle with 
orners (0; 0), (1; 1) and ( dd+` ; `d+` ). Then R0;� maps Lp to Lq.(ii) Suppose �` < � < 0 and ��d�`` < � < d � `. Suppose that (1=p; 1=q) belongs to the interse
tionof the halfspa
e de�ned by (d + `)( 1p � 1q ) � � � 2� with the pentagon with 
orners (1; 1), (0; 0), (1; `+�` ),(��̀ ; 0) and (d��d+` ; �+`d+`), with the ex
eption of the points (1; `+�` ), (��̀ ; 0). Then R�;� maps Lp to Lq.For the rest of this se
tion we �x �; � and will not expli
itely indi
ate the dependen
e on these param-eters. If p = q the assertion is easily veri�ed by Minkowski's inequality. This also applies to the 
ases p = 1and q < `=(`+ �), and q = 1 and p < �`=� (when �` < � < 0). Thus we may assume 1 < p < q < 1,and that (1=p; 1=q) satis�es the restri
tions in Theorem 5.1; moreover we may assume p � 2 sin
e the 
asep > 2 follows by 
onsidering the adjoint operator. It is always assumed that the fun
tion f is supportedwhere jyj � "10 and " is as in (2.16). These assumptions are always assumed but not expli
itly stated invarious lemmas throughout this se
tion.De�ne(5.3) Rjf(x) = hG�;�(x; �)�j(x; �); fi:Then Rj is bounded from Lp to Lq with a bound independent of j, by Proposition 3.2. Let M be su
hthat 2M � ("
0)�10 (with 
0 as in (2.8)) and let J be a �nite set of integers, all of them �M . Let(5.4) Rf =Xj2JRjf:A priori we know that R is bounded from Lp ! Lq with norm O(
ard(J)), and our task is to improve thisto show that the Lp ! Lq bound is independent of the 
ardinality of J . On
e this is proved the Lp ! Lqboundedness of R�;� follows immediately from appli
ations of the monotone 
onvergen
e theorem.



14 ANDREAS SEEGER STEPHEN WAINGERWe begin by 
utting out the low frequen
ies (here we follow essentially [2℄, [11℄) and split R = A + Bwith A =Xj2J !0(2�2j jD00j)Rj ;(5.5.1) B =Xj2J(I � !0(2�2j jD00j))Rj :(5.5.2)We �rst proveLemma 5.2. The operator A is bounded from Lp to Lq, with norm independent of the family J .Proof. Sin
e the 
onvolution kernel !0(2�2j jD00j) is O(22j`(1 + 22j jx00j)�N we see that for � < 0��!0(2�2j jD00j)Rjf(x)��. ZZZjy00�S(x0;w00;y0)j.2�2jjx0�y0j�2�j 22j`(1 + 22j jx00 � w00j)N G�;�(x0; w00; y0; y00)jf(y0; y00)jdy0dy00dw00. ZZf(y0;y00):jx0�y0j�2�jg jf(y0; y00)j2j(d�`��) Zjw00�S(y0;y00;x0)j.2�2j 22j`(1 + 22j jx00 � w00j)N jw00 �S(y0; y00; x0)j���`dw00 dy0dy00. ZZjx0�y0j�2�j 2j(d+`+2���)(1 + 22j jx00 �S(y0; y00; x0)j)N jf(y0; y00)jdy0dy00;here S is as in x2.3. The same estimate applies to the 
ase � = 0 (with only notational 
hanges in theargument).We see that the kernel of !0(2�2jD00)Rj 
an be estimated by K�;�2 (as in (4.3)), uniformly in j. Thisbound also applies to the sum Pj2J !0(2�2jD00)Rj sin
e the kernel of !0(2�2jD00)Rj is supported wherejx0 � y0j � 2�j . Thus the assertion follows from Lemma 4.1. �We now turn to the operator B and we shall �rst prove estimates for a frequen
y lo
alized variant.Proposition 5.3. Let # be a �xed unit ve
tor in R` and let u be unit ve
tor in Rd�` so that(5.6) jhu;rx0ihv;ry0i#�S(0; 0)j = maxU2Sd�` jhU;rx0ihv;ry0i#�S(0; 0)j:Suppose further that the standard assumptions of x2.1 and (2.16) hold and(5.7) hu;rx0iS(x; x0) = 0for all jxj � ". Let a(�00) be supported in f�00 : j �00j�00j � #j � "5g and satisfy j��a(�00)j . j�00j�j�j for alladmissible multiindi
es �. Let � = a(D):Then the operator �B is bounded from Lp to Lq and its operator norm satis�es the estimatek�BkLp!Lq . 1 + kRk1�p2Lp!Lq :



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 15Proof of Proposition 5.3.We 
an rewrite B as B =Xj2JXk>j !(2�2kjD00j)Rj :Let Lk be de�ned by dLkf(�) = !(2�2kj�00j)a(�00):then �B =Pj2JPk>j LkRj .We shall now introdu
e an angular Littlewood-Paley de
omposition (as in [14℄) and pro
eed for theproof of our endpoint estimate using a well known argument by M. Christ (his preprint [3℄ is unpublishedbut the argument has been used in various related arti
les on Lp improving properties of 
onvolutionoperators; for a rather general formulation see [10℄). De�ne operators Pk;j , ePk;j byPk;j = MXi=�M �(2�2k+j+i jhu;D0ij)(5.8.1) ePk;j = M+10Xi=�M�10 �(2�2k+j+ijhu;D0ij)(5.8.2)(we have 
hosen 2M � 
�10 "�10). De�ne alsoeLk = 10Xi=�10!(2�2k+ijD00j)The operator �B is then de
omposed as�B =Xj2JXk>j LkRj = T + E1 + E2 + E3where T =Xj2JXk>j LkPk;jRj ePk;j eLk(5.9) E1 =Xj2JXk>j Lk(I � Pk;j)Rj ePk;j eLk(5.10) E2 =Xj2JXk>j LkRj(I � ePk;j)eLk(5.11) E3 =Xj2JXk>j LkRj(I � eLk):(5.12)The main term is represented by T , and we shall show that the operators E1, E2 and E3 have quanti-tative properties similar to or better than the operator 
onsidered in Lemma 5.2.For the main term we use the known argument in the translation invariant 
ase [3℄. Let Tve
t denotethe operator a
ting on Lp(`2(Z2)) fun
tions F = fFj;kg by[Tve
tF ℄j;k = RjFj;k:



16 ANDREAS SEEGER STEPHEN WAINGERBy Littlewood-Paley theory and 
omplex interpolation (note that p � 2)kT kLp!Lq . kTve
tkLp(`2)!Lq(`2). kTve
tkp=2Lp(`p)!Lq(`p)kTve
tk1�p=2Lp(`1)!Lq(`1):(5.13)From Proposition 3.2 and Minkowski's inequality it follows that(5.14) kTve
tkLp(`p)!Lq(`p) . 1:Also by the pointwise inequality jRj(f)j � R(jf j) and the positivity of R we havesupj;k jRjFj;k(x)j � R[supj;k jFj;kj℄(x)so that(5.15) kTve
tkLp(`1)!Lq(`1) . kRkLp!Lq :Therefore in view of Lemma 5.2 and (5.13-15)(5.16) kT kLp!Lq � C(1 + kRk1�p=2Lp!Lq + 3Xi=1 kEikLp!Lq )Consequently the proof of Proposition 5.3 will be 
omplete on
e we verify the uniform Lp ! Lq boundednessof the operators E1, E2, E3.It will be 
onvenient to work with os
illatory integral representations of the kernels of Rj . Sin
e theFourier transform of 
`;�j � j�+` is j�j� (see [8℄) we 
an write the kernel Rj of Rj as an os
illatory integralRj(x; y) = �j(x; y)jx0 � y0j��d+` Z e{h�;y00�S(x;y0)ij� j�d�:For k � 1 we denote by Rkj the operator with integral kernelRkj (x; y) = �j(x; y)jx0 � y0j�(d�`��) Z e{h�;y00�S(x;y0)i!(2�2kj� j)�0�"�4j �j� j � #j�j� j�d� ;the operator R0j is de�ned similarly but with !(2�2kj� j) repla
ed by !0(j� j).Lemma 5.4. (i) The operator Pj R0j maps Lp to Lq.(ii) Let s � 0. Let Zs(x; y) denote the distribution kernel of the operatorPj Lj+s(Rj�P4i=�4Rj+s+ij ).Then jZs(x; y)j . 4�sjK�;�2 (x; y)jwhere K�;�2 is de�ned in (4.3). Thus this operator maps Lp ! Lq with operator norm O(4�s).Proof. (i) It is easy to see that by the theorem on fra
tional integration the operator Pj R0j maps Lp toLq, provided that 1 < p < q <1 and (d� `)(1=p�1=q) � �. However the 
ondition (d� `)(1=p�1=q) � �is implied by (d+ `)(1=p� 1=q) � � � 2� and ��(d� `)=` � � whi
h is assumed throughout this se
tion.(ii) Note that Rj � 4Xi=�4Rj+s+ij =Xr�5Rj+s+rj + S0j;j+s + Xr��4Vj;j+s+r + V0j;j+s



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 17where the kernels S0j;k, Vj;k and V 0j;k of S0j;k, Vj;k and V0j;k are given byS0j;k(x; y) = �j(x; y)jx0 � y0j�(d�`��) Z e{h�;y00�S(x;y0)i!0(2�2(k�5)j� j)j� j��0("�4j �j� j � #j)d�Vj;k(x; y) = �j(x; y)jx0 � y0j�(d�`��) Z e{h�;y00�S(x;y0)i!(2�2kj� j)j� j��1� �0("�4j �j� j � #j)�d�V 0j;k(x; y) = �j(x; y)jx0 � y0j�(d�`��) Z e{h�;y00�S(x;y0)i!0(2�2(k�5)j� j)j� j��1� �0("�4j �j� j � #j)�d�:We shall now show that the distribution kernel ofPj Lj+sRj+s+rj is for r � 5 
ontrolled by 4�(s+r)K�;�2(
f. (4.3)). Also the kernels of Pj Lj+sS0j;j+s and Pj Lj+sV0j;j+s are bounded by 4�sK�;�2 ; we shall omitthe entirely analogous argument.The kernel of LnRkj is given byKj;k;n(x; y) = (2�)�` ZZZ e{[hx00�w00;�00i+h�;y00�S(x0;w00;y0)i℄�!(2�2kj� j)j� j�!(2�2nj�00j)a(�00)�0("�5j �j� j � #j)�j(x0; w00; y0; y00)jx0 � y0jd�`�� dw00 d�00 d�:We need to estimate this kernel when k � n + 5, and n � j. The w00-gradient of the phase fun
tion is��00 �rw00(� � S(w; y0)) and sin
e kSw00 � I`;`k � "1=2 this gradient is now � 22k (note that it would be� 22n if we worked with LnS0j;n).We use integration by parts with respe
t to w00 followed by integration by parts with respe
t to � and�. Observe that with ea
h di�erentiation of �j(x0; w00; y) we loose a fa
tor of 22j , the main 
ontribution
oming from di�erentiating �0(jw00�S(x0; w00; y0)j=jw0� y0j2). Thus we gain 2�2k+2j with ea
h integrationby parts in w00. As a result we obtain that the kernel of LnRkj is dominated by a 
onstant times2�(2k�2j)N0 Z jx0 � y0j��d+` 22k(`+�)(1 + 22kjy00 � S(x0; w00; y0)j)N1 22n`(1 + 22njx00 � w00j)N1 dw00. minf2�(2n�2j)(N0�N1); 2�(2k�2j)(N0�N1)gjx0 � y0j��d+` 22k(`+�)(1 + 22kjy00 � S(x0; x00; y0)j)N1 ;here we 
hoose N0 � N1. Moreover the kernel of the operator LnSj;k is of 
ourse supported wherejx0 � y0j � 2�j . The asserted pointwise estimate for Pj Lj+sRj+s+rj is now a 
onsequen
e of summinggeometri
 series.The same argument applies to the operatorsPj Lj+sVj;j+s+r , r � �4. Note that the above restri
tionr > 4 (or k > n+4) is not ne
essary now in view of the fa
tor (1��0("�4j �j� j�#j)); namely the assumptions�00 2 supp a (hen
e ���00=j�00j�#�� � "5) and j�=j� j�#j � "4=2� "5 guarantee that j� �00� � �Sw00(w; y0)j �maxfj�00j; j� jg whi
h is suÆ
ient to 
arry out the above integration by parts arguments. �We shall now bound the operators E1, E2 and E3 in (5.10-12). However we �rst modify these operatorsby repla
ing LkRj in the de�nitions (5.10-12) by P4i=�4 LkRk+ij . Let for i = �4; : : : ; 4E1j;k;i = Lk(I � Pk;j)Rk+ij ePk;j eLk(5.17.1) E2j;k;i = LkRk+ij (I � ePk;j)eLk(5.17.2)and(5.18) E3j;k;i = LkRk+ij (I � eLk)and let(5.19) eE1;i =Xj2JXk>j E1j;k;i; i = �4; : : : ; 4;similarly de�ne eE2;i, eE3;i.



18 ANDREAS SEEGER STEPHEN WAINGERLemma 5.5. The operators E1 �P4i=�4 eE1;i, E2 �P4i=�4 eE2;i, and E3 �P4i=�4 eE3;i are bounded from Lpto Lq.Proof. This is a 
onsequen
e of Lemma 5.4. We use it in 
onjun
tion with Littlewood-Paley theory, theiterated version of the Fe�erman-Stein ve
tor-valued maximal fun
tion and the Mar
inkiewi
z-Zygmundtheorem on ve
tor-valued extensions of Lp ! Lq bounded operators ([7℄, [22℄). We use the pointwiseestimate jPk;jgj �Mg where M denotes the strong maximal fun
tion. Let F �;� be the fra
tional integraloperator with distribution kernel K�;�2 . ThenkE1f � 4Xi=�4 eE1;ifkq .Xs�0 


�Xj2J j(I � Pj+s;j)Lj+s�Rj � 4Xi=�4Rj+s+ij � ePj+s;j eLj+sf j2�1=2


q.Xs�0 4�s


�Xj2J �MF �;� [j ePj+s;j eLj+sf j℄�2�1=2


q .Xs�0 4�s


�Xj2J �F �;�[j ePj+s;j eLj+sf j℄�2�1=2


q.Xs�0 4�s


�Xj2J j ePj+s;j eLj+sf j2�1=2


p . kfkp:The other estimates are proved in a similar way. �As a 
onsequen
e of Lemma 5.5 it remains, in order to 
on
lude the proof of Proposition 5.3, to showthat the operators eE1;i, eE2;i, eE3;i are bounded from Lp to Lq. We shall show that eE1;i maps Lp to Lq. Theproof of the boundedness of eE2;i is very similar and will therefore be omitted. Finally, the arguments inthe proof of Lemma 5.4 show the Lp ! Lq boundedness of eE3;i; the details will be omitted as well.Boundedness of eE1;i. We analyze the kernel of Lk(I � Pk;j)Rk+ij whi
h is given by(5.20) Kk;j;i(x; y) = (2�)�`�1 ZZ ZZZ e{'(x;t;h00;y;�;�;�00)ak;j;i(x; t; h00; y; �; �; �00) d�d�00d� dh00dtwhere(5.21) '(x; t; h00; y; �; �; �00) = �t�� h�00; h00i � h�; S(x0 + tu; x00 + h00; y0)� y00iand(5.22) ak;j;i(x; t; h00; y; �; �; �00) = a(�00)!(2�2kj�00j)!(2�2(k+i)j� j)j� j��0("�12 j�=j� j � #j)�(x0 + tu; x00 + h00; y)�j(x0 + tu; x00 + h00; y)jx0 + tu� y0j��d+`(1� �M (2�2k+j j�j))with �M =PMs=�M �(2s�).Claim. For s � 0, i = �4; : : : ; 4 we havejKj+s;j;i(x; y)j . 4�sjK�;�2 (x; y)juniformly in j. Here the right hand side is de�ned in (4.3).Taking the 
laim for granted we 
an argue as in the proof of Lemma 5.5 and obtain using Littlewood-Paley theory and the boundedness of the operator F �;� with kernel K�;�2

 eE1;if

q = 


Xs>0Xj2J Lj+s(I � Pj+s;j)Rj+s+ij ePj+s;j eLj+sf


q.Xs>0 


�Xj2J ��Lj+s(I � Pj+s;j)Rj+s+ij ePj+s;j eLj+sf ��2�1=2


q.Xs>0 4�s


�Xj2J ��F �;�[j ePj+s;j eLj+sf j℄��2�1=2


q.Xs>0 4�s


�Xj2J �� ePj+s;j eLj+sf ��2�1=2


p . kfkp



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 19We pro
eed to prove the pointwise estimate 
laimed above. We note that(5.23) ak;j;i(x; t; h00; y; �; �; �00) = 0 if j�j 2 [22k�j�M+4; 22k�j+M�4℄:Now we �rst integrate by parts many times in (5.20) with respe
t to t; this is then followed by an integrationby parts in the (�; �00; �) variables.Note that be
ause of hu;rw0S(y0; w00; y0)i = 0 we may expand�t'(x; t; h00; y0; �; �; �) = ��� hu; � �Sx0(x0 + tu; x00 + h00; y0)i= ��+ hu; � �Sx0x0(y0; x00 + h00; y0)(x0 + tu� y0)i+ � �r1(x; y0; t; h00)= ��+ hu; � �Sx0x0(0; 0; 0)(x0 + tu� y0)i+ � �� X�=1;2 r�(x; y0; t; h00)�(5.24)where jr1(x; y0; t; h00)j � C1jy0 � x0 � tuj2jr2(x; y0; t; h00)j � C1"10jy0 � x0 � tuj:Di�erentiating (5.7) we see that hu; eSx0x0(x; x0) + eSx0y0(x; x0)i = 0and by (2.7-8) and the 
hoi
e of u we dedu
e that
022k�j�2 � ��hu; � �Sx0x0(0; 0; 0)(x0 + tu� y0)i�� � 
�10 22k�j+3and 
onsequently, by our 
hoi
e of M22k�j�M+5 � 
022k�j�2 � ���t'(x; t; h00; y0; �; �; �00) + ��� � 
�10 22k�j+3 � 22k�j+M�5on the support of the symbol; hen
e by (5.23)j�t'(x; t; h00; y0; �; �; �00)j & maxf�; 22k�jg:Moreover the higher derivatives of the phase fun
tions are O(22k�j). Taking s derivatives of �j withrespe
t to w0 (in any dire
tion) 
auses a blowup of size O(22js) whi
h would be too mu
h for our argument.Fortunately, in view of the assumption hu;rx0S(y0; w00; y0)i = 0 we have the better estimate(hu;rw0)s�j(w; y))i = O(2js):Thus we may perform integration by parts in the t variables and gain fa
tors of size 2(2j�2k)N . This isthen followed by an integration by parts in the frequen
y variables and we obtainjKk;j;i(x; y)j . 2j(d�`��)22k�2�(2k�2j)N1 Z �j(x0 + tu� y0)�(x0 + tu; x00 + h00; y)�22k�j(1 + 22k�j jtj)N2 22k`(1 + 22kjh00j)N2 22k`(1 + 22kjy00 � S(x0 + tu; x00 + h00; y0)j)N3 dtdh00:Now observe that jS(x0 + tu; x00 + h00; y0)� S(x; y0)j . jh00j+ 2�j jtj+ jtj2



20 ANDREAS SEEGER STEPHEN WAINGERand therefore 22k`(1 + 22kjy00 � S(x0 + tu; x00 + h00; y0)j)N3 . 22k`(1 + 22kjy00 � S(x; y0)j)N3 �1 + 22k�j jtj+ jtj2 + 22kjh00j)N3This yieldsjKk;j;i(x; y)j . 2�(2k�2j)(N1���`)2j(d+`��+2�)(1 + 22kjy00 � S(x; y0)j)�N3 �ZZR�R` �j(x0 � y0 � tu)�(x00 + tu; x00 + h00; y) 22k�j(1 + 22k�j jtj)N2�N3 22k`(1 + 22kjh00j))N2�N3 dtdh00where �j denotes the 
hara
teristi
 fun
tion of [2�j�1; 2�j+1℄ [ [�2�j+1;�2�j�1℄.This integral is straightforward to estimate. Observe that 2j(d+`��+2�)(1 + 22kjy00 � S(x; y0)j)�N3 isbounded by jy00 � S(x; y0)j�(d+`��+2�)=2; thus if jx0 � y0j � C2�j we use either this bound or the bound2j(d+`��+2�) and estimate jKk;j;i(x; y)j by C2�(2k�2j)(N1���`)K�;�2 (x; y).Next, if C2�j � jx0� y0j � " and jy00�S(x; y)j � " then �j(x0� y0� tu) vanishes unless jtj � 
jx0� y0j.In this 
ase the 
ontribution of the t integral above isO�(2j�2kjx0 � y0j�1)N2�N3�1�+ O�(2�2kjx0 � y0j�1)N2�N3�d+`�:Thus in this 
asejKk;j;i(x; y)j . 2�(2k�2j)(N1���`)2j(d+`��+2�)(1 + 2j jx0 � y0j)�2N (1 + 22kjy00 � S(x; y0)j)�Nwhere 2N = minfN2 �N3 � d+ `;N3g. We may 
hoose 2N � N1 + 2d and N � d and again the boundjKk;j;i(x; y)j by C2�(2k�2j)(N1���`)K�;�2 (x; y) is straightforward. Thus we have established the pointwiseestimate 
laimed above. This 
on
ludes the proof of Proposition 5.3.Proof of Theorem 5.1, 
on
lusion. We have to prove that R in (5.4) maps Lp to Lq; assuming theangular lo
alization (5.1) in the x0 � y0 variables. We split the identity operator as E0 +P� �� whereE0 = �0(D00) and �0 is 
ompa
tly supported in f�00 : j�00j � 1000g. Moreover let �� = a�(D00) where a� isa 
onstant 
oeÆ
ient symbol of order 0 supported inf�00 : j �00j�00j � #� j � "5; j�00j � 100g;we 
an arrange this de
omposition so that the sum in � is extended over O("�5(`�1)) terms. Clearly itsuÆ
es to bound E0R and ��R for all �. We �rst note that the argument of Lemma 5.2 shows that E0Rmaps Lp ! Lq if (d+ `)(1=p� 1=q) � � � 2�.It remains to 
onsider ��R� for �xed �. Let u� be a unit ve
tor in R` so thatjhu� ;rx0ihv;ry0i#� �S(0; 0)j = maxU2Sd�` jhU;rx0ihv;ry0 i#� �S(0; 0)j:Now denote by Q� the 
hange of variable Q(�; u�) as de�ned in x2.2, moreover de�ne Q�h(w) = h(Q�w)for fun
tions supported in B"9 . Let R� = Q�RQ�1� ; then the assumptions of Proposition 5.3 apply to R�(with u = u�).De�ne e�� = ea�(D00) so that ea� is supported in f�00 : j �00j�00j � #� j � "2; j�00j � 10g; and ea�(�00) = 1 ifj �00j�00j � #� j � "2 and j�00j � 20g. Then by Proposition 5.3 and Lemma 5.2(5.26) ke��R�kLp!Lq � C(1 + kR�k1�p2Lp!Lq)



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 21But in view of the support properties of the kernel of R and the lo
al Lp and Lq boundedness of theoperators Q� and Q�1� we get kR�kLp!Lq . kRkLp!Lq :To 
on
lude the proof we splitR = E0R+X� ��Q�1� R�Q�= E0R+X� ��Q�1� e��R�Q� +X� ��Q�1� (I � e��)R�Q� :By (5.26)(5.27) k��Q�1� e��R�Q�kLp!Lq . 1 + kRk1�p=2Lp!Lqand it remains to show that(5.28) k��Q�1� (I � e��)R�Q�kLp!Lq . 1:Now let L0 = !0(jD00j) and Lk = !(4�kjD00j). We analyze the kernel of Lk��Q�1� (I � e��)Lk0 ,denoted by Hk;k0;�(x0; x00; y00). The inverse 
hange of variable Q�1� is of the form x 7! (x0;G�(x)), withk(G�)x00 � I`;`k � "7 (
f. (2.17/18)). Thus Hk;k0 ;� is given byHk;k0 ;�(x0; x00; y00) =ZZZ e{(hx00�z00;�00i+hG�(x0;z00)�y00;�00i)!(4�kj�00j)!(4�k0 j�00j)a�(�00)(1� ea�(�00))dz00d�00d�00The z00-gradient of the phase fun
tion is of size � maxf4k; 4k0g, therefore we may argue as in the proof ofLemma 5.4 above. In parti
ular, after additional integration by parts in �00; �00 when x is large we obtainthat jHk;k0;�(x0; x00; y00)j . minf4�kN1 ; 4�k0N1g(1 + jx00j)�N2 :In view of the lo
alization properties of R� and the Lp boundedness of R� it follows thatkLk��Q�1� (I � e��)Lk0R�Q�kLp!Lq . minf4�k; 4�k0gand as a 
onsequen
e (5.28) holds.Putting all the estimates together we obtain that(5.29) kRkLp!Lq . 1 + kRk1�p=2Lp!Lqand sin
e we already know the �niteness of kRkLp!Lq the estimate (5.29) implies a bound uniform in thefamily J . �We 
an now give theProof of Theorem 1.2.3. By summing geometri
al series we see from Lemma 4.3 that the operatorPm�0Pk>m Tk;m 
an be pointwise bounded by a 
ombination of operators handled in Theorem 5.1;in this 
al
ulation we use that � is negative. Moreover the operator Pm�0Pk�m Tk;m is bounded byProposition 4.4. The assertion 1.2.3 follows. �



22 ANDREAS SEEGER STEPHEN WAINGERNe
essary 
onditions. The ne
essity of the 
onditions in Theorems 1.1 and 5.1 follows from standardexamples. For the sake of 
ompleteness we shall brie
y des
ribe them. We assume that � � 0 and1 � p � q �1 and 
onsider the operator R�;� . We remark that for the 
ase � > 0, the 
onditions in 1.2.1also 
annot be improved. This is be
ause any stri
t improvement would yield to an improvement in the
ase � = 0, by interpolation with the estimates for a negative �1 
lose to 0.Let BÆ be the ball of radius Æ � "10, 
entered at the origin, and let �Æ be the 
hara
teristi
 fun
tionof BÆ. Then k�Ækp & Æd=p and R�;��Æ & Æd�`�� on the set fx : jx0j � Æ2; jx00 �S(0; x0)j � 
Æg for small
. Thus kR�;��Ækq & Æd�`���(d�`)=q and we see that the 
ondition d=p � `=q � d � ` � � is ne
essary.By applying the same example to the adjoint operator we get the ne
essary 
ondition `=p � d=q � ��.Thus (1=p; 1=q) belongs to the pentagon with 
orners (1; 1), (0; 0), (1; �+`` ), (��̀ ; 0) and (d��d+` ; �+`d+` ) and thispentagon be
omes the triangle in Theorem 1.1 when � = 0.If � < 0 then the operator R�;� is not bounded from L1 to L`=`+� as one 
he
ks that one has the lowerbound R�;��Æ & Ædjx00 �S(0; x0)j���` if CÆ � jx00 �S(0; x)j � ", with C large. By applying this to theadjoint operator it follwos that R�;� is not bounded from L��=` to L1.Next let PÆ be the plate fy : jy0j � Æ; jy00j � Æg and let fÆ be the 
hara
teristi
 fun
tion of PÆ ,thus kfÆkp . Æ(d+`)=p. One 
he
ks that in a �xed fra
tion of PÆ one has the lower bound R�;�fÆ(x) &Æ��2�; in this 
al
ulation we use (2.2) and (2.6). Thus kR�;�fÆkq & Æ��2�+(d+`)=q and the 
ondition(d+`)(1=p�1=q) � ��2� is ne
essary. This 
on
ludes the proof of ne
essity in Theorem 1.1 and Theorem5.1.A third ne
essary 
ondition for the Lp ! Lq boundedness of R�;� is (d � `)(1=p � 1=q) � �. To seethis let gÆ be the 
hara
teristi
 fun
tion of fy : jy0j � Æ; jy00j � "g. Then R�;�gÆ � Æ� for all x in a �xedfra
tion of this set and from this one dedu
es the ne
essity of the 
ondition (d� `)(1=p� 1=q) � �. Noti
ethat the 
ondition (d� `)(1=p� 1=q) � � is more restri
tive than (d+ `)(1=p� 1=q) � � � 2� if and onlyif � < ��(d� `)=`; thus this example is only relevant to show the sharpness of 1.2.4.6. Lp estimates for Fourier integral operatorsIt will be 
onvenient to introdu
e some normalized 
lasses of symbols.Let k > 0 and 0 < m < k. Then we denote by Sk;m the 
lass of symbols a(x; y; �; �) supported in(6.1) f(x; y; �; �) : jxj+ jyj � "; 22k�1 � j� j � 22k+1; 2m�1 � j�j � 2m+1g if 0 < m < k;f(x; y; �; �) : jxj+ jyj � "; 22k�1 � j� j � 22k+1; j�j � 2g if m = 0:for whi
h (1.11) holds, with � = � = 0. Moreover, if m > 0 let �m be the 
lass of symbols a(x; y; �; �)supported in(6.2) f(x; y; �; �) : jxj+ jyj � "; j� j � 22m+1; 2m�1 � j�j � 2m+1gsu
h that (1.11) holds with � = � = 0.We re
all that T [a℄ denotes the integral operator with kernel (1.10).L2 estimates.We shall assume that a 2 I�;�� and begin by proving L2 estimates. These are qui
k 
onsequen
es ofwhat is already proved in [11℄, and we shall be brief. It is shown in in [11℄ that L2 boundedness holds if2�� � � 0, 0 � � < d � `. While the endpoint estimate 
orresponding to (�; �) = ((d � `)=2; d� `) mayfail the proof of the estimates in [11℄ still provides useful information whi
h will be used in an interpolationargument in x7.Lemma 6.1. (i) Let am 2 �m and suppose that supm�1 j
mj � 1. Then P1m=1 
mT [am℄ is bounded onL2.



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 23(ii) Let a 2 S d�`2 ;`�d and suppose that a(x; y; �; �) = 0 if j� j � j�j2. Then T [a℄ is bounded on L2.Proof. We note that the phase fun
tion �(x; y; �; �) = h�; x0 � y0i + h�; y00 � S(x; y0)i parametrizes thediagonal in T �
� T �
 as a Lagrangian manifold; that is f(x;�x; y;��y) : �� = 0;�� = 0g is a subset off(x; �; x�)g.Be
ause of the support restri
tion of am the symbolPm>0 
mam belongs to the Calder�on-Vaillan
ourtsymbol 
lass S01=2;1=2. It is shown in the proof of Proposition 2.7 in [11℄ that H�ormander's equivalen
e ofphase fun
tion theorem remains valid with S01=2;1=2 symbols and that 
onsequently P1m=1 
mT [am℄ is apseudodi�erential operator of order 0, with symbols of type (1=2; 1=2). Thus the L2 boundedness followsfrom the Calder�on-Vaillan
ourt theorem. (ii) is an immediate 
onsequen
e of (i). �Lemma 6.2. (i) Let m0 � 0 be �xed and for k > m0 let m(k) be an integer su
h that m0 � m(k) < k.Suppose that supk�1 j
kj � 1 and that �k 2 Sk;m(k).Then the operator Pk>m0 
k4k d�`2 2�m(k)(d�`)T [�k℄ is bounded on L2, with norm independent of the
hosen sequen
e fm(k)g.(ii) Suppose a 2 S d�`2 ;`�d and suppose that a(x; y; �; �) = 0 if j� j � Cj�j1=2, and, for m > 0, letam(x; y; �; �) = �(2�mj�j)a(x; y; �; �). Then T [am℄ is bounded on L2 with operator norm independently onm. (iii) Let f�kg be as in (i) and let � 2 S01=2;1=2(
� 
;Rd ). Then the statement in (ii) remains valid if�k is repla
ed by ��k.Proof. For (i) we note that the kernel of T [�k℄ is given by(6.3) Z e{h�;y00�S(x;y0)ibk(x; y; �) d�where(6.4) bk(x; y; �) = Z �k(x; y; �; �)e{hx0�y0;�i d�:Note that for every k the � integration is extended over a dyadi
 annulus f� : j�j � 2m(k)g and thusjbk;m(x; y; �)j . 4k(d�`)=2 � j� j(d�`)=2. Moreover, by examining the derivatives of bk;m one 
he
ks as in [11℄that bk is a symbol of order (d � `)=2 and type (1=2; 1=2). Sin
e the phase fun
tion involves ` frequen
yvariables one may argue as in[11℄ and dedu
e that Pk�m0 
kT [�k℄ are Fourier integral operators of order0 and type (1=2; 1=2), hen
e bounded in L2 (with bounds independent of the sequen
e f�kg).Part (ii) follows from part (i) with the 
hoi
e m(k) = m if we observe that the symbols am with theassumed support property 
an be de
omposed as CPk>m 2k(d�`)=22m(`�d)
k;mak;m where 
k;m � 1 andak;m 2 Sk;m. Clearly the above argument also proves (iii). �Remark. The variant (iii) is in
luded in order to 
over lo
alizations of the form ak;m(x; y; �; �)�(2j(jx0�y0j))if j � k; these are of type (1=2; 1=2) sin
e ak;m is supported where � � 22k.H1! L1 estimates.Lemma 6.3. Suppose 0 � � < d � `, a 2 S0;��, and suppose that a(x; y; �; �) is supported where j�j �12 j� j1=2. Let(6.5) am(x; y; �; �) = � a(x; y; �; �)�(2�mj�j) if m > 0a(x; y; �; �)�0(j�j) if m = 0 :Then T [am℄ maps L1 boundedly to L1, with operator norm O((1 +m)2�m�).Proof. The kernel Km 
an be written as Pk�mKk;m where Kk;m is as in (4.6) and satis�es (4.7) with� = 0. The operator with kernel Kk;m is 
learly bounded on L1, with norm O(2�m�). �



24 ANDREAS SEEGER STEPHEN WAINGERLemma 6.4. Suppose a 2 S0;��, 0 � � < d � ` and suppose that a(x; y; �; �) is supported where j�j �2j� j1=2. Let am be as in (6.5). Then T [am℄ maps H1 boundedly to L1, with operator norm dominated byC2�m�.Proof. By the theorem on the atomi
 de
omposition ([7℄, [22℄) it suÆ
es to estimate T [am℄fQ where fQ isan L2 fun
tion supported on a 
ube Q with 
enter yQ and sidelength ÆQ � 1 so that kfQk2 � Æ�d=2Q andR fQdx = 0.We de�ne the ex
eptional setWQ = fx : jx0 � (yQ)0j � "; jx00 �S(yQ; x0)j � CÆQg;for large but �xed C; on this set we shall use a mixed norm L1(L2) estimate.We de�ne phase fun
tions and amplitudes on R` depending on the parameters x0; y0. Letbx0;y0m (x00; y00; �) = Z am(x0; x00; y0; y00; �; �)e{hx0�y0;�id�and �x0;y0(x00; y00; �) = h�; S(x0; x00; y0)� y00i:Denote by T x0;y0m the operator with kernelKx0;y0m (x00; y00) = Z e{�x0;y0 (x00;y00;�)bx0;y0m (x00; y00; �)d�:By an integration by parts one sees thatj��x00;y00��� bx0;y0m j � C�;� 2m(d�`��)(1 + 2mjx0 � y0j)Nand by the standard theory for pseudodi�erential operators and their behavior under 
hanges of variablesit follows that 

T x0;y0m 

L2(R`)!L2(R`) . 2m(d�`��)(1 + 2mjx0 � y0j)N :We now estimate the 
ontribution on WQ. For �xed x0 set W x0Q = fx00 : (x0; x00) 2 WQg. Letfy0(y00) = f(y0; y00), then TmfQ(x0; x00) = Zy0 T x0;y0m fy0dy0:On WQ we boundZWQ jTmfQ(x)jdx � Zjx0�(yQ)0j�" Zjx00�S(yQ;x0)j�CÆQ Z jT x0;y0m fy0Q (x0)jdy0dx00dx0. Æ 2̀Q Z �Z ��� Z jT x0;y0m fy0(x00)jdy0���2dx00�1=2dx0. Æ`=2Q Z Z �Z jT x0;y0m fy0Q (x00)j2dx00�1=2dx0dy0. Æ`=2Q Z Z 2m(d�`��)(1 + 2mjx0 � y0j)N �Zy00 jfy0Q (y00)j2dy00�1=2dx0dy0. 2�m�Æ`=2Q Zx0 �Zy00 jfx0Q (y00)j2dy00�1=2dx0. 2�m�Æd=2Q kfQk2 . 2�m�:(6.6)



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 25On the 
omplement of WQ we use the kernel estimates of Lemma 4.3.We split am =Pk�m�1 ak;m where the kernel Kk;m of T [ak;m℄ satis�es the estimate (4.7) with � = 0.Consequently sin
e jx00 �S(y; x0)j � jy00 � S(x; y0)j we have(6.7) ZW 
Q jT kmfQ(x)jdx . 4�kÆ�1Q 2�m�kfQk1 if 4kÆQ � 1:From the gradient estimates in (4.8) and by using the 
an
ellation property of the atom fQ we get(6.8) Z jT kmfQ(x)jdx . 4kÆQ2�m�kfQk1 if 4kÆQ � 1;and the asserted H1 ! L1 bound follows from (6.6), (6.7) and (6.8). �Corollary 6.5. Suppose that 0 < � < (d � `)=2 and � > 2�. Then T 2 I�;�� is bounded on L d�`d�`�� andbounded on L d�`� .Proof. We shall prove the L d�`d�`�� boundedness; by x2.3 this also implies the L d�`� boundedness.Let a 2 S�;�� and let am be as in (6.5). De�neam;z(x; y; �; �) = am(x; y; �; �)(1 + j� j2 + j�j2)(�0(1�z)+�1z��)=2(1 + j�j2)(���0(1�z)��1z)=2where �0 = d�`d�`�2� (� � 2�), �1 = d � `, �0 = 0 and �1 = (d � `)=2. Then am;� = am for � = 2�=(d � `).For Re(z) = 0 the symbol am;z belongs to S�0;�0 and for Re(z) = 1 it belongs to S�1;�1 . By Lemma 6.3and Lemma 6.4 the operator T [am;z℄ is bounded from H1 to L1, with norm (1 +m)2�m�0 if Re(z) = 0.By Lemma 6.1 and Lemma 6.2 it is bounded on L2 with norm O(1) if Re(z) = 1. By interpolation we �ndthat T [am℄ is bounded on L d�`d�`�� with norm O((1+m)2�m�0(1��)) = O((1+m)2�m(��2�)). The assertionfollows by summing in m. �7. Lp ! Lq estimates for Fourier integral operatorsWe begin by giving a di�erent formulation of parts 1.2.1 and 1.2.2 of Theorem 1.2. Suppose that0 < � < (d � `)=2 and 2� < � < d � `. Then statement 1.2.1 of Theorem 1.2 says that T 2 I�;��maps Lp ! Lq if (1=p; 1=q) belongs to the 
losed trapezoid with 
orners ( �d�` ; �d�`), (d�`��d�` ; d�`��d�` ),(1=p�;�; 1=q�;�); (1=q0�;�; 1=p0�;�) where(7.1) 1p�;� = d� `� �d� ` � (� � 2�)`(d+ `)(d� `)1q�;� = d� `� �d� ` � (� � 2�)d(d+ `)(d� `) :Observe that(7.2) 1p�0;�0 = 1q�0;�0 = 12 if �0 = d� `2 ; �0 = d� `;and if(7.3) �1 = 0; �1 = (� � 2�) d� `d� `� 2�; � = d� `� 2�d� `



26 ANDREAS SEEGER STEPHEN WAINGERthen 2� < � < d� ` implies 0 < �1 < d� ` and we 
ompute that(7.4) (1� �)� 1p�0;�0 ; 1q�0;�0 �+ �� 1p�1;�1 ; 1q�1;�1 � = � 1p�;� ; 1q�;� �:Therefore, one would like to prove Theorem 1.2 by interpolation from an Lp1 ! Lq1 result for operatorsin I0;��1 (already proved only for the 
ase of weakly singular Radon transforms) and an L2 result foroperators in I d�`2 ;`�d. Unfortunately, operators in the latter 
lass may fail to be bounded on L2; thissomewhat 
ompli
ates the interpolation argument.Performing a �nite �nite 
oni
 partition of unity in the � variables we may assume thatsupp a � �(x; y; �; �) : jxj+ jyj � "10; j� j+ j�j � 2M+10; �� �j� j � #j � "+ j� j�1	;for some given unit ve
tor # in R` , and M is 
hosen as in x5.We shall now set up the various interpolation arguments. We �x � and � and use the abbreviation(p; q) = (p�;� ; q�;�); (pi; qi) = (p�i;�i ; q�i;�i); i = 1; 2:We may split T = TFIO + TPsDO where TFIO 
orresponds to a symbol whi
h is supported wherej� j1=2 � j�j=2 + 2M+5 and TPsDO 
orresponds to a symbol supported in the 
omplementary region. ThusTPsDO = T [b℄ where b vanishes if j� j1=2 � 2j�j+ 10 . LetWz(�; �) = (1 + j� j2 + j�j2)(�0(1�z)+�1z��)=2(1 + j�j2)(���0(1�z)��1z)=2and bz(x; y; �; �) = b(x; y; �; �)Wz(�; �), so that W� = 1. By Lemma 6.1 the operator T [bz℄ is boundedon L2 if Re(z) = 0 and by Proposition 4.4 it is bounded from Lp1 to Lq1 if Re(z) = 1; all bounds are ofadmissible growth in z. Thus TPsDO maps Lp to Lq by analyti
 interpolation.Now we 
onsider TFIO = T [a℄ where a vanishes if j� j1=2 � maxf2M ; j�j=2g. We �rst split o� anotheroperator whi
h behaves like TPsDO. Let az = aWz and ak;m;z = �k;maz where �k;m is as in (4.5). Also letak;m;j;z(x; y; �; �) = ak;m;z(x; y; �; �)�(2j jx0 � y0j)eak;m;z(x; y; �; �) = ak;m;z(x; y; �; �)�0(2kjx0 � y0j)Let Vs;z :=Xk�s T [eak;k�s;z ℄By Lemma 6.2 (i), with the 
hoi
e m(k) = k � s, the operator Vs;z is bounded on L2, uniformly in s,if Re(z) = 0. By Lemma 4.5 it is bounded from Lp1 ! Lq1 if Rez = 1; the bound is O(2�s(d�`��1)); allbounds are admissible in z. Interpolating we see that Vs;� maps Lp ! Lq with norm O(2�s(d�`��1)�) =O(2�s(d�`��)); hen
e Pk;m T [eak;m℄ maps Lp to Lq.It remains to estimate the operator Pk>0Pm<kPj<k T [ak;m;j;z℄. We wish to use an angularLittlewood-Paley de
omposition as in the proof of Proposition 5.3. Given a unit ve
tor v in Rd�` wemake an angular lo
alization in x0 � y0. By employing a �nite partition of unity it then suÆ
es to boundPk>0Pm<kPj<k T [�k;m;j;z℄ where�k;m;j;z(x; y; �; �) = ak;m;j;z(x; y; �; �)�0("�5j x0 � y0jx0 � y0j � vj):We 
hoose u as in (5.6) and perform the 
hange of variable w 7! (w0; w00 + F (w;u)) � Q(w) in x2.2, andde�ne Qh(z) = h(Q(z)).



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 27As a result we have to show the Lp ! Lq bound for the operator(7.5) Xk>0 Xm<kXj<kQT [�k;m;j;z℄Q�1 =Xk>0 Xm<kXj<k T zk;m;jwhi
h has kernel Xk>0 Xm<kXj<k ZZ ei[h�;y00�eS(x;y0)i+hx0�y0;�i℄e�k;m;j;z(x; y; �; �) d�d�where hu; eSx0(x; x0)i = hu; eSy0(x; x0)i = 0 and e�k;m;j;z(x; y; �; �) = �k;m;j;z(Q(x);Q(y); �; �) g(x)=g(w), andg is smooth and positive.We now use a Littlewood-Paley operators Lk de�ned by Lk =P4i=�4 !(4�k+ijD00j) and also the angularthe Littlewood-Paley operator Pk;j de�ned in (5.8). LetTk;m;j = T [e�k;m;j;�℄:We split Xk;m;j Tk;m;j = Xk;m;j LkTk;m;jLk + Xk;m;j(I � Lk)Tk;m;jLk + Xk;m;j Tk;m;j(I � Lk)and then Xk;m;j LkTk;m;jLk = (I + II) + (III + IV ) + (V + V I)where I + II = � Xk;m;jm�j + Xk;m;jm>j �LkPk;jTk;m;jPk;jLkIII + IV = � Xk;m;jm�j + Xk;m;jm>j �Lk(I � Pk;j)Tk;m;jPk;jLkV + V I = � Xk;m;jm�j + Xk;m;jm>j �LkTk;m;j(I � Pk;j)Lk:We then split I =Ps�0 Is by linking m = j � s for s � 0 and prove bounds for the expressions Is whi
hde
ay in s. Similarly we split II setting j = m� s. The expressions III; IV; V; V I are split into a doubleseries depending on nonnegative parameters r, s; we prove then de
ay in r; s. We set j = k�r;m = k�r�swhen estimating III and V and j = k � r � s, m = k � r when estimating IV and V I . In the followingproposition we state the relevant estimates for the pie
es.Proposition 7.1. Let 0 � � < (d � `)=2 and 2� < � < d � ` and let p = p�;�, q = q�;�. There isÆ = Æ(�; �) > 0 so that the following estimates hold.(i) For s � 0(7.6) 


Xk>s Xs�j<kLkPk;jTk;j�s;jPk;jLk


Lp!Lq . 2�sÆ(ii) For s � 0(7.7) 


Xk>s Xs�m<kLkPk;m�sTk;m;m�sPk;m�sLk


Lp!Lq . 2�sÆ



28 ANDREAS SEEGER STEPHEN WAINGER(iii) For s � 0, r � 0,


 Xk>s+rLk(I � Pk;k�r)Tk;k�r�s;k�rPk;k�rLk


Lp!Lq . 2�(r+s)Æ(7.8) 


Xk>sLkTk;k�r�s;k�r(I � Pk;k�r)Lk


Lp!Lq . 2�(r+s)Æ:(7.9)(iv) For s � 0, r � 0,


 Xk>s+rLk(I � Pk;k�r�s)Tk;k�r;k�r�sPk;k�r�sLk


Lp!Lq . 2�r�s(7.10) 


Xk>0LkTk;k�r;k�r�s(I � Pk;k�r�s)Lk


Lp!Lq . 2�r�s:(7.11)(v) For j < k, m < k k(I � Lk)Tk;m;jLkkLp!Lq . 2�k(7.12) kTk;m;j(I � Lk)kLp!Lq . 2�k:(7.13)Taking Proposition 7.1 for granted we 
an 
omplete theProof of Theorem 1.2. Let p�;� and q�;� be as in (7.1). A 
ombination of the estimates in Proposition7.1 shows that the operator in (7.5) is bounded from Lp�;� to Lq�;� . Together with the dis
ussion pre
eding(7.5) this yields the Lp�;� ! Lq�;� bound of the operator T [a℄ where a 2 S�;��. If we apply this to theadjoint operator we obtain the Lq0�;� ! Lp0�;� bound. If � > 0 we interpolate with the Lp ! Lp estimate inx6, and if � = 0 we interpolate instead with the H1 ! L1 bound in x6. This yields the proof of statements1.2.1 and 1.2.2. Statements 1.2.4 and 1.2.3 have already been proved in x4 and x5, respe
tively. �We now give a sket
h of theProof of Proposition 7.1.We begin by estimating the main terms (7.6), (7.7) and useLemma 7.2. Let R�1 be as in (1.12) and let Re(z) = 1. ThenjT zk;m;jf(x)j . minf2�(j�m)(d�`��1); 2�(m�j)gM(QR�1Q�1[f ℄)where M denotes the strong maximal fun
tion.Proof. This follows from the kernel estimates (4.7) in a straightforward way. �Proof of (7.6), (7.7). By Theorem 5.1 we know that R�1 maps Lp1 to Lq1 and so does eR�1QR�1Q�1.Arguing as in the proof of Lemma 5.5, by the Fe�erman-Stein and Mar
inkiewi
z-Zygmund theorems wetherefore have the ve
tor-valued inequality


�Xj;k jM eR�1fj;kj2�1=2


q1 . 


�Xj;k jfj;kj2�1=2


p1 :We apply the Lq1 ! Lq1 and Lp1 ! Lp1 Littlewood-Paley inequalities for the Littlewood-Paley de
ompo-sitions fLkPk;jgj;k and Lemma 7.2 and obtain(7.14) 


Xk>s Xs�j<kLkPk;jT zk;j�s;jPk;jLk


Lp1!Lq1 . 2�s(d�`)�1 if Re(z) = 1:



BOUNDS FOR SINGULAR FRACTIONAL INTEGRALS 29By Lemma 6.2 and the almost orthogonality of the Littlewood-Paley operators(7.15) 


Xk>s Xs�j<kLkPk;jT zk;j�s;jPk;jLk


L2!L2 . 1 if Re(z) = 0:(7.14) and (7.15) prove (7.6) by interpolation and (7.7) is proved in the same way.Proof of (7.8), (7.9), (7.10), (7.11). We analyze the kernel of Lk(I � Pk;j)T zk;m;j whi
h is given byZZ ZZZZ e{ (x;t;h00;y;;�;�00;�;�)
k;m;j;z(x; t; h00; y; �; �; �; �) d�00d�d�d� dtdh00where  (x; t; h00; y; �; �00; �; �) = �t�� hh00; w00i+ h�; y00 � eS(x0 + tu; x00 + h00; y0)i+ hx0 + tu� y0; �iand
k;m;j;z(x; t; h00; y; ; �; �00; �; �)= 4Xi1=�4 �(4�k+ij�00j)X�1� MXi2=�M �(2�2k+j+i2 j�j)�e�k;m;j;z(x0 + tu; x00 + h00; y; �; �):Arguing as in x5 we �rst integrate by parts with respe
t to t. This yields the pointwise estimate2(2j�2k)N2 Zw 22k�j(1 + 22k�j jtj)N 22k`(1 + 22kjh00j)N� �j(x0 + tu� y0) 2m(d�`��)(1 + 2mjx0 + tu� y0j)N 22k`(1 + 22kjy00 � eS(x0 + tu; x00 + h00; y0)j)N1 dtdh00here N2 � N1; N and �j is the 
hara
teristi
 fun
tion of [� � [2�j�1; 2�j+1℄. A somewhat lengthy butstraightforward 
al
ulation similar to the one for the term eE1;i in x5 shows that for s � j � kjLk(I � Pk;j)T zk;j�s;jf(x)j . Z 4j�k2�s(d�`��1)(jx0 � y0j+ jy00 � eS(x; y0)j1=2)�1�d�`jf(y)jdy; Re(z) = 1;if jxj � " and better (trivial) de
ay estimates for jxj � ".By using the Lp1 ! Lq1 mapping property of the standard fra
tional integral operator and its ve
tor-valued extension, together with the Lp inequalities for the Littlewood-Paley operator de�ned by Lk (or eLkwith eLkLk = Lk) we obtain the estimate


 Xk>s+rLk(I � Pk;k�r)T zk;k�r�s;k�rPk;k�rLk


Lp1!Lq1 . 2�r2�s(d�`��); Re(z) = 1:By Lemma 6.2, T zk;k�r�s;k�r is bounded on L2 if Re(z) = 0, uniformly in s, r and k, and by the almostorthogonality of the Lk (or eLk) we get


 Xk>s+rLk(I � Pk;k�r)T zk;k�r�s;k�rPk;k�rLk


L2!L2 . 1; Re(z) = 0:Analyti
 interpolation yields (7.8). The estimates (7.9), (7.10) and (7.11) are proved in the same way.Proof of (7.12), (7.13). One writes out the integrals de�ning the kernels of the de
ompositions of LlT zk;m;jand, if jl � kj > 2 one gains fa
tors minf2�kN ; 2�lNg by integrating in the 00-variables. �
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