
ENDPOINT MAPPING PROPERTIES OF SPHERICAL MAXIMAL OPERATORSAndreas Seeger Terene Tao James Wright1. IntrodutionFor a funtion f 2 Lp(Rd ), d � 2, we onsider the spherial means(1.1) Atf(x) = ZSd�1 f(x� ty)d�(y)where d� is the rotationally invariant measure on Sd�1, normalized suh that �(Sd�1) = 1. We wish tostudy the question of pointwise onvergene as t ! 0 where the radii t are restrited to a subset E of(0;1). Pointwise onvergene is established from boundedness properties of the maximal funtionMEf(x) = supt2E jAtf(x)jfor f 2 Lp(Rd ).Stein [14℄ showed that for E = R+ the maximal operator ME is bounded on Lp if and only if p >d=(d�1), d � 3; the same result for the ase d = 2 was later proved by Bourgain [2℄. The ritial exponentp(E) for Lp boundedness of ME , for any set E 2 (0;1), was determined by Seeger, Wainger and Wright[12℄. It is omputed using a dilation invariant notion of Minkowski-dimension. In order to desribe theresult we let N(E; Æ) be the Æ-entropy number of E, that is the minimal number of intervals of length Æneeded to over E (we shall always rede�ne N(;; Æ) = 1). De�neEk = [2k; 2k+1) \Eand p(E) = 1 + 1d� 1�supÆ>0 supk2Z logN(Ek; 2kÆ)log Æ�1 �:Then ME is bounded on Lp for p > p(E) and unbounded on Lp if p < p(E). Moreover various Lp resultswere proven in [12℄ for the ritial exponent p = p(E); however these results fell short of being neessaryand suÆient.For the ase that our maximal operator ats only on radial funtions sharp endpoint estimates in almostall ases have been obtained in [13℄. The relevant ondition for 1 < p < d=(d� 1) turned out to beCondition (Cp;q). supj �Xn�0[N(Ej+n; 2j)℄q=p2�n(d�1)q=p0�1=q <1 if p � q <1;(1.2) supk2ZÆ>0N(Ek; 2kÆ)1=pÆ(d�1)=p0 <1 if q =1:(1.3)The �rst author is supported in part by a grant from the National Siene Foundation. The seond author is a ClayPrize fellow and is supported by the Sloan and Pakard foundations. Typeset by AMS-TEX1



It is shown in [13℄ that for ME to map Lprad to the Lorentz spae Lp;q , 1 < p < d=(d� 1), p � q � 1it is neessary and suÆient that ondition (Cp;q) holds. The neessity an be shown by testing ME onharateristi funtions of small balls. Observe that (Cp;1) is the limiting ase of (Cp;q) as q ! 1. Forp = d=(d� 1) there are di�erent haraterizations for Lprad ! Lp;q boundedness, at least when d > 2.The main purpose of this paper is to prove analogues of the Lprad ! Lp and Lprad ! Lp;1 endpointestimates for general funtions in Lp, assuming however an additional regularity assumption (see hypothesis(Rp) below). The main general results for 1 < p � d=(d� 1) are stated in Theorem I, II, III and IV below.The ase where eah set Ek = E \ [2k; 2k+1℄ is a onvex sequene serves as a model ase (see x8 below).In partiular we haveTheorem 1.1.(i) Let 0 < � <1 and let(1.4) E(�) = f2k(1 + ���) : k 2 Z; � 2 Z+g:Then ME(�) is of weak type (p; p) if and only if p � 1 + [(d� 1)(�+ 1)℄�1.(ii) Let 1=(d� 1) < � <1 and let(1.5) eE(�) = f2k(1 + log��(2 + �)) : k 2 Z; � 2 Z+g:Then M eE(�) is of weak type (p; p) if and only if p � d=(d� 1).Remarks.(a) Only the endpoint ases p = 1+ [(d� 1)(�+1)℄�1 and p = d=(d� 1) are new. When � < 1=(d� 1),M eE(�) fails to be weak type (d=(d� 1); d=(d� 1)). The ase � = 1=(d� 1) remains open.(b) For p = 1 a slight variant was obtained by M. Christ who proved that the launary spherialmaximal operator (with E = f2k : k 2 Zg) maps the Hardy spae H1 to L1;1. This an be dedued from asimple modi�ation of the proof below, and in fat the weak type estimates in x5 are extensions of Christ'sargument.() It is not known whether the launary spherial maximal funtion maps L1 to L1;1. The losestknown result is a weak type L log logL inequality proved by the authors in [11℄.We shall now formulate a tehnial result on Lp boundedness forME whih is only a minor improvementof the result in [12℄. It gives a reasonably sharp but not yet de�nitive estimate for general sets E of dilations.It will be applied however to sets whih tend to be muh thinner than the original sets.Proposition 1.2. Suppose that d � 2 and 1 < p � d=(d � 1). Suppose that f!jg1j=0 is a sequene ofpositive numbers satisfying(1.6) Xj�0 !�p0j � 1and suppose that(1.7) supk2ZXj�0 !pjN(Ek+j ; 2k)2�j(d�1)p=p0 � Ap0:Then ME is bounded on Lp(Rd ), with operator norm dominated by CA0.We now desribe our regularity assumption and begin with the following2



De�nition. (i) A set J � R+ is equally spaed with width Æ and possible deviation C > 1 if for all t 2 Jthe inequalities(1.8) C�1Æ � dist(t; J n ftg) � CÆhold.(ii) A family J = fJg of subsets of R+ is uniformly equally spaed if for every J 2 J there is aÆ = Æ(J) > 0 so that (1.8) holds with Æ(J) and a onstant C independent of J .(iii) Let J be an equally spaed subset of R+ . Then we all aJ = inf J and bJ = sup J the endpointsof J .(iv) Let J be uniformly equally spaed family of subsets of R+ . Then we denote by D(J ) the set ofendpoints D(J ) = [J2J faJ ; bJg.Our regularity assumption will say that eah Ek an be split into \not too many" equally spaed sets.This gives a large lass of examples, sine in general the sets Dk of endpoints are often muh thinner thanthe sets Ek.Regularity hypothesis (Rp).E satis�es hypothesis (Rp) if for eah k there is a olletion J k = fJg of subsets of [2k; 2k+1℄ suhthat Ek � [J2J kJ and the following three onditions are satis�ed.(a) The family fJ : J 2 [k2ZJ kg is uniformly equally spaed (with uniform possible deviation C).(b) There is a positive sequene ! = f!jg1j=0 with P1j=0 !�p0j � 1 so that the sets of endpoints Dk �D(J k) = [J2J kfaJ ; bJg satisfy(1.9) supk�0 �Xj�0 �N(Dk+j ; 2k)2�j(d�1)p=p0!pj�1=p � C0 <1:() Let J k� denote the subfamily of all J 2 J k whih are equally spaed with width 2k�� and possibledeviation C. Then we assume that there is C1 > 1 suh that(1.10) XJ2J k� ard(J) � C1N(Ek; 2k��)for every k 2 Z, � 2 N.Note that by Proposition 1.2 the hypothesis (Rp) insures that the maximal operator assoiated to theset of endpoints, [k>0Dk, maps Lp to Lp.Our main results areTheorem I. Suppose that 1 < p < d=(d� 1) and suppose that E satis�es the regularity assumption (Rp).Then ME is bounded on Lp(Rd ) if and only if ondition (Cp;p) holds.Theorem II. Suppose that 1 < p < d=(d�1), and suppose that E satis�es the regularity assumption (Rp).Then ME is of weak type (p; p) if and only if ondition (Cp;1) holds.It is well known that the weak type (p; p) bounds imply pointwise onvergene theorems. By theTheorems of Calder�on and Stein [15 ,h.X,x2℄ and the fat that (Cp;1) is neessary for the Lp ! Lp;1inequality, these are sharp: 3



Corollary 1.3. Let ftjg1j=1 be a sequene with limj!1 tj = 0 and assume that E = ftjg satis�es ondition(Rp) for some p 2 (1; d=(d� 1)). Let Atjf(x) = RSd�1 f(x� tjy0)d�(y0).(i) Suppose that E satis�es ondition (Cp;1). Then limj!1Atjf(x) = f(x) almost everywhere.(ii) If ondition (Cp;1) is not satis�ed then there is a nonnegative funtion f 2 Lp(Rd ) suh thatlim supj!1Atjf(x) =1 almost everywhere.Remark. It would of ourse be interesting to know whether some regularity assumption is needed. Asa typial example where the regularity assumption fails onsider the Cantor middle third set, translatedby 1, so that E0 = f1 +P1�=1 b�3�� : b� 2 f0; 2gg and let E = [k2ZE0. Now the ritial exponent ispr = 1 + (d � 1)�1 log 2= log 3. The set E0 satis�es ondition (Cpr;pr) and the set E sati�es ondition(Cpr;1). However Rpr fails to hold and thus Theorems I and II above do not apply. It is not knownwhether ME0 or ME are of weak type (pr; pr) ; see however a ounterexample for a losely relatedmaximal operator in x8.2 below. A muh easier result is thatME is of restrited weak type, see Proposition1.4 below.We now turn to the limiting ase p = pd := d=(d � 1). There are sharp results, at least for Lpdboundedness, although onditions (Rp) and (Cp;p) are replaed by the following di�erent onditions ( eRpd)and (eCpd), respetively.Regularity hypothesis ( eRpd).E satis�es hypothesis ( eRpd) if for eah k there is a olletion J k = fJg of subsets of [2k; 2k+1℄ so thatassumptions (a) and (b) in (Rp) hold but () in (Rp) is replaed by(e) There is a C1 > 1 suh that(1.11) X��n 2�� XJ2J k� ard(J) � C12�nN(Ek; 2k�n)holds uniformly in n 2 N.The analogue of ondition (Cp;p) isCondition (eCpd).The disrete measurePk2ZPn>0N(Ek; 2k�n)2�nn1=(d�1)Æk;n is a Carleson measure on the upper halfplane; i.e.(1.12) supjIj�1 1jI j X(k;n)2T (I)N(Ek; 2k�n)2�nn1=(d�1) <1where the supremum is taken over all intervals of length � 1 and T (I) is the tent of I, i.e. T (I) = f(x; t) :x 2 I; 0 � t � jI jg:It was shown in [13℄ that for d � 3 ondition (eCpd) is equivalent with the Lpd boundedness of MEon radial funtions. For general Lp funtions we have a similar result provided that hypothesis ( eRpd) issatis�ed:Theorem III. Let d � 2 and pd = d=(d�1) and suppose that E satis�es the regularity assumption ( eRpd).Then ME is bounded on Lpd(Rd ) if and only if ondition (eCpd) holds.Conerning a weak type (pd; pd) inequality in dimensions d � 3 one may onjeture that the hypothesis(1.13) N(Ek; 2kÆ) � CÆ�1�log(1=Æ)��1=(d�1)is neessary and suÆient for Lpd ! Lpd;1 boundedness as this is shown to hold in [13℄ on Lpdrad. For generalfuntions f and under the regularity assumption ( eRpd) we prove the following slightly weaker result.4



Theorem IV. Let d � 3 and pd = d=(d� 1) and suppose that E satis�es the regularity assumption ( eRpd)and suppose that(1.14) N(Ek; 2kÆ) � CÆ�1�log(1=Æ)��1=(d�1)�log log(1=Æ)��1uniformly in k 2 Z and Æ � e�2. Then ME is of weak type (pd; pd).At present we do not know whether the same onlusion holds under the weaker ondition (1.13). Thisaounts for the as yet undeided weak type (pd; pd) estimate forM eE(�) in the remaining ase � = 1=(d�1)in Theorem 1.1.We now briey turn to the question of restrited weak type inequalities. Here no regularity assumptionis needed.Proposition 1.4. Let 1 < p � d=(d�1), d � 3 or 1 < p < 2, d = 2 and suppose that E satis�es ondition(Cp;1). Then ME is of restrited weak type (p; p), i.e. it maps Lp;1 to Lp;1.It remains open whether for the range 1 < p < d=(d � 1) the operator is of weak type (p; p), underondition (Cp;1) alone, without the regularity assumption. Proposition 1.4 is muh more straightforwardthan Theorem II above and we shall not give the details of the proof here. For pd = d=(d� 1), d � 3 theresult had been already proved by Bourgain [1℄, and a variant of his argument applies for 1 < p < d=(d�1)as well. Indeed let Ajt be the frequeny loalized operator as in (2.1) below and de�ne the maximaloperator Mj by Mjf(x) = supt2E jAjtf(x)j. Then the estimates in [12℄ show that for 1 < q � 2 theoperator Mj is bounded on Lq with norm O(2j(d�1)( 1q0� p�1q )) and the argument in [1℄ shows the restritedweak type estimate. The argument fails for p = d = 2 and in fat the question whether the full irularmaximal funtion is of restrited weak type (2,2) (i.e. maps L2;1 to L2;1) had been posed in [16℄. We notethat Lekband [7℄ proved that for radial funtions one has indeed L2;1rad ! L2;1 boundedness. However aBesiovith set onstrution an be used to disprove the restrited weak type (2,2) inequality for generalfuntions. The argument (see x8 below) showsProposition 1.5. Suppose d = 2 andsupk>0 supÆ<1=10N(Ek; 2kÆ)Æ log Æ�1 =1:Then ME is not of restrited weak type (2; 2).Struture of the paper: In x2 we shall review some essentially known estimates for spherial meanswhih are needed later. In x3 we shall review atomi deompositions in Lp. x4 ontains a proof of the Lpestimates as stated in Proposition 1.2 and Theorem I. The weak type (p; p) inequalities (Theorem II) areproved in x5. The neessary modi�ations for the proofs of Theorem III and IV are disussed in x6 and x7,respetively. In x8 we disuss some examples and inlude the proof of Proposition 1.5.2. Estimates on spherial meansWe shall need to introdue regularizations of At in (1.1) via dyadi frequeny uto�s. Let �0 bea radial C10 funtion so that �0(�) = 1 if j�j � 1 and �0(�) = 0 if j�j � 2. For j = 1; 2; : : : let�j(�) = �0(2�j�)� �0(21�j�) and de�ne Ajt by(2.1) dAjtf(�) = d�(t�)�j(t�) bf(�)so that At = 1Xj=0Ajt :5



Let ~� be a radial C10 funtion whih is supported where 2�6 � j�j � 26 and equal to 1 when 2�5 �j�j � 25. Let P lf be de�ned by dP lf(�) = ~�(2�l�) bf(�) and observe that(2.2) Ajtf = AjtP j�kf if t 2 Ek:Clearly the maximal funtion supt>0 jAjtf(x)j is dominated by CjMHLf(x) where MHL is the Hardy-Littlewood maximal funtion of f ; in fat Cj = O(2j) (f. Lemma 2.1 below). Therefore(2.3) MEf(x) �MHLf(x) + supk2Z supt2Ek jXj�10AjtPj�kf(x)j;and throughout this paper we shall assume that summations in j are extended over j � 10.Here we ollet well known estimates on spherial means and its regularization Ajt whih were used inthis or a related form in previous papers (in partiular see [12℄ for some of the more tehnial statements).Lemma 2.1. Let Ajt be as above and let Bjt = ddtAjt . Suppose that 2k � t � 2k+1, j � 10 and that1 � p � 2.(i) jAjtf(x)j + 2�jtjBjt f(x)j � CM2j Z t�d(1 + 2j j jx�yjt � 1j)M jf(y)jdy(ii) kAjtkLp!Lp + 2k�jkBjt kLp!Lp . 2�j(d�1)=p0 :(iii) Let I � [2k�1; 2k+2℄ be an interval of length 2k�j . Then supt2I jAjtf jLp . 2�j(d�1)=p0kfkLp:Sketh of Proof. (i) is a straightforward alulation, whih also implies (ii) for p = 1. It is well known thatjd�(�)j . (1+ j�j)�(d�1)=2 and thus (ii) for p = 2 follows, and interpolation settles the ase 1 < p < 2. (iii)follows by writing Ajt = Ajt0 + R tt0 Bjsds for t0 2 I .De�nition. For a set E of dilations and L 2 Z, let IL(E) be a minimal olletion of dyadi intervals oflength 2L overing E . For I 2 IL(E) let rI denote the midpoint of the interval I , and for a dyadi ube Q,let 2L(Q) denote its sidelength. Then for � � 1, we de�ne(2.4) VQ;�(E) = [I2IL(Q)(E)fx 2 Rd : ��jx� xQj � rI �� � 2L(Q)+4�g;for � = 1 we also write VQ(E) = VQ;1(E).Lemma 2.2. Let E � [2k; 2k+1℄.(i) For 1 � p � 2,  supt2E jAjtf jLp . [N(E ; 2k�j)℄1=p2�j(d�1)=p0kfkLp:(ii) Let Q be a dyadi ube, let fQ be an L2 funtion supported on Q and suppose k�j � L(Q) � k�10.Then  supt2E jAjtfQjL1(VQ(E)) . 2(�L(Q)+k�j)(d�1)=2N(E ; 2k�j)2L(Q)d=2kfQkL2 :6



(iii) Let Q be a olletion of pairwise disjoint ubes of sidelength 2k�j+� where � � 0. Then for � � j, supt2E ��Ajt [XQ2Q fQ℄��Lp . 2��(d�1)(1=p�1=2)[N(E ; 2k�j)℄1=p2�j(d�1)=p0� XQ2Q jQj1�p=2kfQkpL2�1=p:(iv) Let Q be as in (iii) and let V be an open set ontaining SQ2Q VQ;�(E). Then, for � � 1, supt2E ��Ajt [XQ2Q fQ℄��Lp(RdnV) � CM (2��)�M( 2p�1)[N(E ; 2k�j)℄1=p2�j(d�1)=p0� XQ2Q kfQkpLp�1=p:(v) The estimates in (i), (ii), (iii) and (iv) remain valid if for t 2 E the operator Ajt is replaed by2k�jBjt = 2k�j ddtAjt .Sketh of Proof. (i) is a rather straightforward onsequene of Lemma 2.1, (iii). To prove (ii) we useCauhy-Shwarz to pass from an L1 estimate on the exeptional set VQ(E) to an L2 estimate (namelyLemma 2.1 (ii) with p = 2), and for the estimate o� the exeptional set we use the expliit form (2.4). (iv)for p = 2 is a onsequene of (i), and (iv) for p = 1 follows from the expliit form of the kernel in Lemma2.1 (i). The general ase is obtained by interpolation. (iii) for p = 2 is a onsequene of (i), and (iii) forp = 1 follows from (ii) and (iv). The general ase is obtained by interpolation. �A small variant isLemma 2.3. Let J � [2k; 2k+1℄ be an equally spaed set with width 2k�� (here � � 0) and possibledeviation B, and let aJ < bJ be the endpoints of J . Suppose that bJ � aJ � 2k�j and � � j. Then thefollowing statements hold.(i)  supt2J jAjtf jLp � CBN(J; 2k��)1=p2�j(d�1)=p02(j��)=pkfkLp :(ii) Let Q be a olletion of pairwise disjoint ubes of sidelength 2k�j+� where � � 0. Then for � � j, supt2J ��Ajt [XQ2Q fQ℄��Lp � CB2��(d�1)(1=p�1=2)ard(J)1=p2�j(d�1)=p02(j��)=p� XQ2Q jQj1�p=2kfQkpL2�1=p:(iii) Let Q be as in (ii) and let V be an open set ontaining SQ2Q VQ;�(E). Then, for � � 1, supt2J ��Ajt [XQ2Q fQ℄��Lp(RdnV) � CB;M (2��)�M( 2p�1)ard(J)1=p2(j��)=p2�j(d�1)=p0� XQ2Q kfQkpLp�1=p:Proof. We simply observe that if bJ � aJ � 2k�j then(2.5) N(J; 2k�j) � 2j��N(J; 2k��) � 2j��ard(J)and the onlusions (i)-(iii) follow from Lemma 2.2. �7



3. Atomi deompositionsWe give a deomposition of the maximal operator and also the funtion it ats on; this is motivatedby one of the proofs of the standard atomi deomposition (following [3℄, [9℄) based on square funtions;used for example in the theory of Hardy spaes on produt domains.For 0 = 10pd let N kf(x) = supjyj�02�k jP kf(x+ y)jand de�ne the maximal square funtionNf(x) = � 1Xk=�1 jN kf(x)j2�1=2;then(3.1) kNfkLp �p kfkLp; 1 < p <1;and kNfkL1 � kfkH1 .Consider the level sets 
n = fx : Nf(x) > 2ng and the expanded sets e
n = fx : MHL�
(x) > 1=2g;here MHL is the Hardy-Littlewood maximal funtion. Then je
nj � Cj
nj. Let R denote the family of alldyadi ubes and let Rn, for n 2 Z, denote the olletion of all dyadi ubes R with the property thatjR \ 
nj > jRj=2 but jR \ 
n+1j � jRj=2. Then from these de�nitions one easily dedues(3.2) 1Xk=�1 XR2RnL(R)=�k k(P kf)�Rk2L2 . 22nj
nj(see for example Lemma 3.1 in [9℄).Let eR = (P lf)�R if L(R) = �l. Then from (2.2) we have(3.3) Ajtf = AjtP j�kf = Ajt [ XL(R)=k�j eR℄if t 2 Ek.Now e
n is an open set with �nite measure and we an form the Whitney-deomposition into dyadiubes. Let Wn be the set of Whitney ubes and observe that every R 2 Rn is ontained in a uniqueWhitney-ube Q(R). This de�nes a funtion R 7! Q(R) for all dyadi ubes.For a dyadi ube Q we de�ne now(3.4) F lQ(f) = XQ(R)=QL(R)=�l eR:Notie that F lQ = 0 if �l > L(Q).>From (2.3) and (3.3), we have the pointwise estimate(3.5) MEf(x) .MHLf(x) + supk2Z supt2Ek Xj�10 ���Ajt [ XL(Q)�k�j F j�kQ (f)℄(x)���:It is useful to introdue a spae Xp of vetor-valued funtions as follows.8



De�nition. Let Xp be the spae of vetor-valued funtions F = (F lQ) where the dyadi ubes Q satisfyL(Q) + l � 0, F lQ is supported on Q, and(3.6) kFkXp = �XQ jQj1�p=2� Xl:L(Q)+l�0 kF lQk2L2�p=2�1=pis �nite.We �rst observeLemma 3.1. For 1 � p � 2, kF (f)kXp . kNfkLp :Proof. We write kF (f)kXp = �XQ jQj1�p=2� X`:L(Q)+`�0 XQ(R)=QL(R)=�` eR2L2�p=2�1=p� �XQ jQj1�p=2� X`:L(Q)+`�0Xn XR2RnQ(R)=QL(R)=�` keRk2L2�p=2�1=p:Now we use the imbedding `p � `2 for p � 2 to estimate the last expression by�XQ jQj1�p=2Xn � X`:L(Q)+`�0 XR2RnQ(R)=QL(R)=�` keRk2L2�p=2�1=p� �Xn XQ2Wn jQj1�p=2� XR2RnQ(R)=Q keRk2L2�p=2�1=pand by (3.2) and several appliations of H�older's inequality this in turn is estimated by�Xn � XQ2Wn jQj�1�p=2�XQ XR2RnQ(R)=Q keRk2L2�p=2�1=p� �Xn je
nj1�p=2� XR2Rn keRk2L2�p=2�1=p. �Xn je
nj1�p=2�22nj
nj�p=2�1=p. �Xn j
nj2np�1=p . kNfkLp :This proves the Lemma. �We now return to estimate the seond term on the right of (3.5). The part where the sum extends overubes Q with L(Q) � k is the most diÆult to handle. In the following lemma we shall �rst dispose of theremaining part whih is dealt with by straightforward L2 estimates.9



Lemma 3.2. Let 1 < p � 2, " > 0 and suppose thatsupk N(Ek; 2kÆ)1=2Æ(d�1�")=2 � A:Let f�Q;lg be a family of measurable funtions so that(3.7) supl kXQ j�Q;lkL2 � 1and de�ne(3.8) NjF (x) = supk2Z supt2Ek ���Ajt [ XL(Q)�k�Q;kF j�kQ ℄(x)���:Then(3.9) kNjFkLp � C2�"jAkFkXpwhere C is independent of the hoie of the partiular family f�Q;kg .Proof. We shall verify (3.9) for p = 1 and for p = 2; the general ase follows by interpolation.For p = 2 we replae the sup in k by a square funtion and use Lemma 2.2 (i) to obtainkNjFkL2 � �Xk  supt2Ek jAjt � XQ:L(Q)�k�Q;kF j�kQ �2L2�1=2� CA2�"j�Xk  XQ:L(Q)�k�Q;kF j�kQ 2L2�1=2� CA2�"j�Xk XQ:L(Q)�k F j�kQ 2L2�1=2where for the last inequality we have used the assumption on the family f�Q;lg. This proves (3.9) for p = 2.Now onsider the ase p = 1. Given a ube Q we let Q� denote the ube with same enter but tenfoldsidelength. We then estimate (following standard proedure in estimations of singular integrals ating onatoms) kNjFkL1 �XQ IQ + IIQwhere IQ =  supk supt2Ek jAjt [�Q;kF j�kQ ℄L1(Q�)IIQ =  supk supt2Ek jAjt [�Q;kF j�kQ ℄L1(RdnQ�):Now for IQ we use the Cauhy-Shwarz inequality and the L2 estimate above to dedue thatIQ . jQj1=2 supk supt2Ek jAjt [�Q;kF j�kQ ℄L2� CA2�"j jQj1=2�Xk F j�kQ 2L2�1=210



For IIQ we use Lemma 2.1 (i). In that formula we use that if y 2 Q, x 2 Q�, L(Q) � k, t � 2k+1 thenjt�1jx� yj � 1j � t�1jx� yj and thus for M > d � 2IIQ . 2j Xk�L(Q) Zjx�yQj�2L(Q)+2 2k(M�d)2�jM ZQ jx� yj�M jF j�kQ (y)jdydx. 2j(1�M) Xk�L(Q) 2(k�L(Q))(M�d)kF j�kQ kL1(Q). 2j(1�M)jQj1=2�Xk kF j�kQ k2L2�1=2:Now M an be hosen to be � 1+ " and we obtain thatPQ(IQ+ IIQ) is bounded by CA2�"jkFkX1 , thusproving (3.9) for p = 1. �For the remainder of the paper we will only have to deal with the part in (3.5) dealing with theontribution k > L(Q). De�ne for a positive integer �(3.10) M�F (x) = supk supt2Ek ���Xj��Ajt [ XQ:L(Q)=k�j+� F j�kQ ℄(x)���:Our main redution in this setion isProposition 3.3. Let 1 < p < 2, suppose that hypothesis (Cp;1) is satis�ed and suppose that for some"0 > 0 the inequality(3.10) kM�FkLp;q � C02�"0�kFkXpholds for all ompatly supported F (meaning that F lQ vanishes for all but �nitely many l and Q). Thenthere is (p; "0) > 0 so that kMEfkLp;q � (p; "0)C0kfkLpfor all f 2 Lp(Rd).Proof. Let F lQ(f) be as in (3.4). For � = 1; 2; ; : : : de�ne F (1)� (f) by [F (1)� ℄lQ(f) = F lQ(f) if L(Q) = � � land [F (1)� ℄lQ(f) = 0 if L(Q) 6= � � l. For j � 10 de�ne [F (2)j ℄lQ(f) = F j+lQ (f) if L(Q) � �l and zerootherwise and let �jQ;l be the harateristi funtion of [n2Z[ fR : R 2 Rn; L(R) = �l � j;Q(R) = Qg.Then for every �xed j ondition (3.7) is satis�ed for the family f�jQ;lg.>From (3.5) we getMEf(x) .MHLf(x) +X�>0M� [F (1)� (f)℄(x) + Xj�10Nj [F (2)j (f)℄(x):Note that it follows from Lemma 3.1 and (3.1) that kF (1)� (f)kXp � Cpkfkp and kF (2)j (f)kXp � Cpkfkp for1 < p � 2, uniformly in � and j. >From hypothesis (Cp;1) it follows that the assumption of Lemma 3.2holds with " = (d� 1)(2� p) whih is positive sine we are assuming p < 2. Thus Xj�10Nj [F (2)j (f)℄Lp;q . Xj�10 2�"jkF (2)j (f)kXp . kfkp:By our assumption we also haveX�>0M� [F (1)� (f)℄Lp;q .X�>0 2�"0�kF (1)� (f)kXp . kfkpand the proposition is proved. � 11



4. Lp estimatesWe shall use Proposition 3.3 and in order to prove Lp estimates we have to verify the Xp ! Lp estimatefor M� in (3.10). We shall �rst prove Proposition 1.2 where no regularity assumption is needed.We shall also use the following de�nitions.Gl�(F ) = XQ:L(Q)=�l+� F lQ(4.1)and let G�(F ) = fGl�(F )gl2Z be the orresponding vetor valued analogue.Proposition 4.1. Suppose that 1 < p < 2 and suppose that Pn !�p0n � 1. Let(4.2) �j;k = N(Ek; 2k�j)1=p2�j(d�1)=p0 :Then kM�FkLp . 2��(d�1)(1=p�1=2) supl � 1Xn=0 j!njp�pn;l+n�1=pkFkXp:Proof. We estimate using H�older's inequalityjM�F (x)j . �Xk f!�1� gp̀p0 1Xj=10!pj supt2Ek jAjtGj�k� (F )jp�1=p:By Lemma 2.2 (iii) the Lp norm of this expression is estimated askM�FkLp . 2��(d�1)(1=p�1=2)�Xk Xj �!j�j;k�p XL(Q)=k�j+� jQj1�p=2F j�kQ pL2�1=p. 2��(d�1)(1=p�1=2)�XQ Xj �!j�j;L(Q)+j���pjQj1�p=2F ��L(Q)Q pL2�1=p. 2��(d�1)(1=p�1=2)�Xl XQ:L(Q)=��lXj [!j�j;l+j ℄pjQj1�p=2F lQpL2�1=p. 2��(d�1)(1=p�1=2)kFkXp: �Proof of Proposition 1.2. Immediate from Propositions 3.3 and 4.1 when 1 < p < 2. The ase p = 2(and hene d = 2) follows as in the proof of Proposition 4.1 where now we treat the whole operatorME .We now turn to the proof of theLp estimates under the regularity hypothesis. For the remainder of this setion we shall �x a hoieof J k, J k� as in the de�nition of regularity assumption (Rp).Let � be a positive integer. Let(4.3) R�F (x) = supk supJ2J k supt2J ��� Xj��:bJ�aJ�2k�j AjtGj�k� (F )(x)���12



and, for m � 0(4.4) Sm;�F (x) = supk sup�:�+m�� supJ2J k�bJ�aJ>2k���m supt2J ���A�+mt G�+m�k� (F )(x)���:Next let(4.5) M�F (x) = supk sup�>� supJ2J k� supt2J �� X�<j<�bJ�aJ>2k�j AjtGj�k� (F )(x)��:Thus(4.6) M�F (x) � R�F (x) +Xm Sm;�F (x) +M�F (x):Finally, for ` > 0, let(4.7) J k;`� = fJ 2 J k� : bJ � aJ � 2k��+`gand de�ne(4.8) M`;�F (x) = supk sup�>`+� supJ2J k;`� supt2J ��A��`t G��`�k� (F )(x)��so that(4.9) M�F (x) � X̀>0M`;�F (x):The laim in Theorem I will be a onsequene of the following Propositions 4.2, 4.3, 4.4, in onjuntionwith Proposition 3.3.The following result is essentially Proposition 4.1 applied to the set of `endpoints', i.e. [kDk.Proposition 4.2. Suppose that 1 � p � 2 and E satis�es the regularity hypothesis (Rp), and let Dk be asin (1.9). Assume that f!�1n g 2 `p0 with norm � 1. Then(4.10) kR�FkLp . 2��(d�1)(1=p�1=2) supl �Xj�0[!jN(Dj+l; 2l)1=p2�j(d�1)=p0 ℄p�1=pkFkXp :Proof. Using H�older's inequality as above (with f!�1n g 2 `p0) we may estimateR�F (x) . �Xk Xj�� !pj supJ:bJ�aJ�2k�j supt2J jAjtGj�k� F (x)jp�1=p:Now if for �xed j; k we let E = [J2J k:bJ�aJ�2k�jJ then N(E ; 2k�j) . N(Dk; 2k�j). Hene by Lemma 2.2(iii),kR�FkLp . �Xk Xj !pj  supJ2J k:bJ�aJ�2k�j supt2J jAjtGj�k� (F )jpLp�1=p. 2��(d�1)(1=p�1=2)�Xk Xj !pjN(Dk; 2k�j)2�j(d�1)p=p0 XL(Q)=k�j+� jQj1�p=2F j�kQ pL2�1=pand from here on the proof goes exatly as for Proposition 4.1. �13



Proposition 4.3. For 1 � p � 2(4.11) kSm;�FkLp . 2�m(d�1)=p02��(d�1)(1=p�1=2) supl �Xj�0N(Ej+l; 2l)2�j(d�1)p=p0�1=pkFkXp :Proof. We have (using Lemma 2.2 (iii) for the sets J 2 J k� and noting N(J; 2k���m) � ard(J))kSm;�FkLp . �Xk;� XJ2J k�bJ�aJ>2k���m � supt2J jA�+mt XL(Q)=k���m+� F�+m�kQ j�p�1=pLp. �Xk;� XJ2J k� �2��(d�1)(1=p�1=2)2�(�+m)(d�1)=p0ard(J)1=p�p� � XL(Q)=k���m+� jQj1�p=2kF �+m�kQ kpL2��1=p:Now by (1.10) the latter expression is estimated by 2��(d�1)(1=p�1=2)2�m(d�1)=p0 times the quantity�Xk;� N(Ek; 2k��)2��(d�1)p=p0 XL(Q)=k���m+� jQj1�p=2kF �+m�kQ kpL2�1=pwhih is bounded bysup` nX� N(E`+�; 2`)2��(d�1)p=p0o1=p�Xl XL(Q)=l�m+� jQj1�p=2kFm�lQ kpL2�1=p:This gives the laimed estimate. �Proposition 4.4. Suppose that supk Xj�0 2�j(d�1)p=p0N(Ej+k ; 2k) � Cp1 :Then for 1 � p � 2 we have the inequality(4.12) kM`;�FkLp . C12��(d�1)(1=p�1=2)2�`(1�d=p0)kFkXp :Proof. This is a small (but ruial) variation of the proof of Proposition 4.3. We have by Lemma 2.3 part(ii), kM`;�FkLp � �Xk X�>`+� XJ2J k;`�  supt2J jA��`t G��`�k� (F )jpLp�1=p. 2��(d�1)(1=p�1=2)��Xk X�>` XJ2J k;`� ard(J)2�(��`)(d�1)p=p02�` XQ:L(Q)=���+`+k jQj1�p=2kF��`�kQ kpL2�1=pand this expression by (1.10) is ontrolled by 2�`(1�d=p0)2��(d�1)(1=p�1=2) times the expression�Xn XQ:L(Q)=�+n+` jQj1�p=2kF�n�`Q kp2X�>`N(En+�; 2n)2��(d�1)p=p0�1=pwhih is . supn �X�>`N(En+�; 2n)2��(d�1)p=p0�1=pkFkXp :Thus (4.12) follows. �Proof of Theorem I. Immediate by Propositions 3.3, 4.2, 4.3 and 4.4.14



5. Weak type (p;p) estimatesIn this setion we shall mostly assume that p < d=(d� 1) and(5.1) supk supj�0N(Ek; 2k�j)1=p2�j(d�1)=p0 � C0:Some statements however will extend to the limiting ase p = d=(d� 1).The proof of Theorem II follows from Proposition 3.3, (4.6), (4.9), Proposition 4.2 and estimates forthe operators Sm;� and M`;�, stated in the following Propositions 5.1 and 5.2.Proposition 5.1. Let Sm;�F be as in (4.4). Suppose that 1 < p � d=(d � 1) if d = 3, and 1 < p <d=(d� 1) = 2 if d = 2, and assume that (5.1) is valid. Then there is " = "(p) > 0 so that for all �;m � 0(5.2) kSm;�FkLp;1 . 2�"(�+m)kFkXp :Proposition 5.2. Let M`;�F be as in (4.8). Suppose that 1 < p < d=(d � 1) and that (5.1) holds. Thenthere is " = "(p) > 0 so that for �; ` � 0(5.3) kM`;�FkLp;1 . 2�"(�+`)kFkXp :Proof of Proposition 5.1. We have to show that for every � > 0(5.4) meas(fx : jSm;�F (x)j � 3�g) . 2�"(m+�)p��pkFkpXp :Now �x � > 0 and let(5.5) Q = jQj1=p�1=2� Xl:L(Q)+l�0 kF lQk2L2�1=2;so that P pQ = kFkpXp. Fix a small "0 > 0 to be hosen later. We divide up the dyadi ubes into twofamilies;(5.6) G = fQ : pQ 1jQj � 2"0(�+m)p�pg;and omplementary family �, so that fQg = G [ � and G \ � = ;. De�neG(F ) = fF lQgL(Q)+l�0Q2GB(F ) = fF lQgL(Q)+l�0Q2� :For Sm;�G(F ) we use a straightforward L2 estimate. >From Lemma 2.2 (iii) (with E = J 2 J k� ), (1.10)and (5.1) we deduekSm;�G(F )k2L2 � �Xk X�>0:�+m�� XJ2J k�bJ�aJ>2k���m supt2J ��A�+mt [ XQ2GL(Q)=k���m+� F�+m�kQ ℄��2�1=22L2.Xk X�>0:����mN(Ek; 2k��)2�(�+m)(d�1) XQ2GL(Q)=k���m+� kF �+m�kQ k2L2. 2�m(d�1)Xk X�>0:����m 2��(d�1)(2�p) XQ2GL(Q)=k���m+� kF�+m�kQ k2L2 :(5.7) 15



>From (5.5) and (5.6) we have for Q 2 G(5.8) kF�+m�kQ kL2 � Q=jQj1=p�1=2 � 2"0(�+m)jQj1=2�:By �Ceby�sev's inequality and (5.7), (5.8) we obtainmeas(fx : jSm;�G(F )(x)j > �g)� ��2kSm;�G(F )k2L2. ��22�m(d�1)Xk X�>0:����m 2��(d�1)(2�p) XQ2GL(Q)=k���m+� kF�+m�kQ kpL2kF �+m�kQ k2�pL2. ��p2"0�(2�p)2�m[(d�1)�"0(2�p)℄Xk X�>0:����m 2��(d�1)(2�p) XQ2G jQj1�p=2F ��L(Q)Q pL2. ��p2�"�2�"mkFkpXp(5.9)for some " > 0 if "0 > 0 is small enough.We now onentrate on the family � of dyadi ubes whih do not belong to G. De�ne(5.10) A(Q; �) � A�;�;m(Q; �) := 2(�+m)"0p�p2�(d�1)p2L(Q)[ 1p� d�1p0 ℄p;note that � 7! A(Q; �) de�nes an inreasing unbounded sequene for � � L(Q) and in partiular(5.11) A(Q;L(Q)) = 2(�+m)"0p�pjQjso that for every Q 2 �, pQ > A(Q;L(Q)).De�nition. For every Q 2 � we de�ne �(Q) to be the smallest integer � > L(Q) so that A(Q; �) � pQ.For eah Q 2 � we then de�ne k(Q; ) = (L(Q) + �(Q))=( + 1) and(5.12) W (Q) = [k(Q;)<k��(Q) [I2IL(Q)(Ek)fx 2 Rd : ��jx� xQj � rI �� � 2L(Q)+42(�(Q)�k)gwhere  < (d� 1)p and note thatmeas(W (Q)) . Xk��(Q)N(Ek; 2k�(k�L(Q)))2L(Q)+k(d�1)2(�(Q)�k). Xk��(Q) 2(�(Q)�k)2(k�L(Q)) d�1p0 p2L(Q)+k(d�1). 2�(Q)(d�1)p2L(Q)[ 1p� d�1p0 ℄p:(5.13)Let W = [Q2� �fx 2 Rd : jx� xQj � 2k(Q;)+4g [W (Q)�:By (5.10), (5.13) and the de�nition of �(Q)meas(W) . XQ2�[2k(Q;)d +meas(W (Q))℄ . 2�(Q)(d�1)p2L(Q)[ 1p� d�1p0 ℄p. XQ2� 2�(�+m)"0p��pA(Q; �(Q)). 2�(�+m)"0p��p XQ2� pQ . 2�(�+m)"0p��pkFkpXp :16



It remains to be shown that(5.14) meas(fx =2 W : Sm;�(B(F )) > 2�g) . 2�(�+m)"0p��pkFkpXp:We split Sm;�(B(F )) =P1s=�1 Is whereIs = supk sup�+m���maxfs;0g supJ2J k�bJ�aJ�2k���m supt2J ��A�+mt � XQ2�L(Q)=k���m+��(Q)=k�s F�+m�kQ ���:We shall prove(5.15) kIsk2L2 . 2�s(d�1)(2�p)2��(2�p)(d�1�"0)2�m[(d�1)(p�1)�"0(2�p)℄�2�pkFkpXp ; s � 0;and(5.16) kIskpLp(RdnW) � CM2�M(�+jsj)(2�p)2�m(d�1)(p�1)kFkpXp ; s � 0:Note that for "0 > 0 small enough inequalities (5.15) and (5.16) imply (5.14) sinemeas(fx =2 W :Sm;�(B(F )) > 2�g)� ��2Xs�0 Is2L2 + ��pXs<0 IspLp(RdnW). 2�"(�+m)p��pkFkpXp(5.17)for suitable " = "(p) > 0.Proof of (5.15). We use Lemma 2.2 (iii) for E = J 2 J k� , (1.10) and (5.1) to obtainkIsk2L2 . Xk;�;J  supt2J A�+mt � XQ2��(Q)=k�sL(Q)=k���m+� F�+m�kQ �2L2. Xk;�;J ard(J)2�(�+m)(d�1) XQ2��(Q)=k�sL(Q)=k���m+� kF �+m�kQ k2L2. 2�m(d�1)Xk;� 2��(d�1)(2�p) XQ2��(Q)=k�sL(Q)=k���m+� kF�+m�kQ k2L2 :As k = �(Q) + s and � = �(Q) � L(Q) + s+ � �m this inequality an be rewritten as(5.18) kIsk2L2 . 2�m(d�1) XQ2� 2(�(Q)�L(Q)+s+��m)(d�1)(p�2)kF ��L(Q)Q k2L2 :Now we use that for Q 2 �kF ��L(Q)Q k2�pL2 � (QjQj1=p�1=2)2�p � �2�d(1=p�1=2)L(Q)A(Q; �(Q))�2�p. h�2"0(�+m)2(d�1)�(Q)2L(Q)( 1p� d�1p0 �d( 1p� 12 ))i2�p17



and ombine this with (5.18) to obtain after a little algebrakIsk2L2 . 2m((d�1)(1�p)+"0(2�p))2��(d�1�"0)(2�p)2�s(d�1)(2�p)�2�pXQ jQj1�p=2kFQkpL2whih is the desired bound.Proof of (5.16). We use the estimate away from the exeptional set in Lemma 2.2 (iv), with � = 2jsj( < (d� 1)p) and s = k � �(Q). ThenkIskpLp(RdnW) .Xk;�  supt2J A�+mt � X�(Q)=k�sL(Q)=k���m+� F�+m�kQ �pLp(RdnW).Xk;� N(Ek; 2k��)2�(�+m)(d�1)p=p02�(�+jsj)M(2�p) X�(Q)=k�sL(Q)=k���m+� jQj1�p=2kF �+m�kQ kpL2. 2�m(d�1)p=p02��M(2�p)2�jsj(2�p)kFkpXp : �Proof of Proposition 5.2.This is similar to the proof of Proposition 5.1. We have to show that for every � > 0(5.19) meas(fx : jM`;�F (x)j � 3�g) . 2�"(`+�)p��pkFkpXp :We indiate the hanges in the proof of Proposition 5.1. Of ourse we systematially replae Sm;� byM`;�. The de�nition (5.6) is the same exept that 2"0mp has to be replaed by 2"0`p; then the argumentsup to (5.9) are similar; we have to use Lemma 2.3 (ii) instead of Lemma 2.2 (iii). Similarly the de�nition(5.10) is hanged to A(Q; �) � A�;�;`(Q; �) := 2(�+`)"0p�p2�(d�1)p2L(Q)[ 1p� d�1p0 ℄p;and the further arguments up to (5.14) have obvious analogues. In the de�nition of A(Q; �) we shall needto take "0 so that "0(2� p) < 1� (d� 1)(p� 1) whih is possible sine p < d=(d� 1).We then split M`;�(B(F )) =P IIs where(5.20) IIs = supk sup��`+� supJ2J k;`� supt2J ��A��`t G��`�k�;s (F )��and G��`�k�;s F := XQ:L(Q)=k��+`+��(Q)=k�s F��`�kQ :The inequalities (5.15) and (5.16) are replaed by(5.21) kIIsk2L2 . 2�s(d�1)(2�p)2��(2�p)(d�1�"0)2�`[(1�(d�1)(p�1))�"0(2�p)℄�2�pkFkpXp ; s � 0;and(5.22) kIIskpLp(RdnW) . 2�`(1� dp0 )p2�s(d�1)(1�p=2)2�(�+jsj)Mp�2�pkFkpXp ; s � 0;from whih we an as before onlude the assertion of the proposition.18



Proof of (5.21) and (5.22). We prove (5.21) and use Lemma 2.3 to estimatekIIsk2L2 �Xk X��`+� XJ2J k;`�  supt2J jA��`t G��`�k�;s (F )2L2�Xk X��`+� XJ2J k;`� ard(J)2�(��`)(d�2)2�� XQ2�L(Q)=k��+`+��(Q)=k�s kF��`�kQ k2L2NowPJ2J k;`� ardJ . N(Ek; 2k��) . 2�(d�1)(p�1) by assumption (1.10) and (Cp;1). We also observe that� = �(Q)� L(Q) + s+ � + ` in the above sum and thus we obtainkIIsk2L2 . 2`(d�2)Xk X��`+� 2�(d�1)(p�2) XQ2�L(Q)=k��+`+��(Q)=k�s kF ��`�kQ k2L2. 2`(d�2) XQ2��(Q)�L(Q)��s kF ��L(Q)Q k2L22(�(Q)�L(Q)+s+�+`)(d�1)(p�2):Now as before kF ��L(Q)Q k2�pL2 . ��2"0(�+`)2(d�1)�(Q)2L(Q)( 1p� d�1p0 �d( 1p� 12 ))�2�p and after doing the algebrawe arrive atkIIsk22 . �2�p2`((d�1)p�d+"0(2�p))2��(d�1�"0)(2�p)2�s(d�1)(2�p) XQ2� jQj1�p=2kF ��L(Q)Q kpL2whih is what we were aiming for.Similarly, the proof of (5.22) is analogous to the proof of (5.16). �6. Lp estimates in the limiting aseWe assume throughout this setion that that the regularity ondition ( eRpd), pd = d=(d�1), is satis�ed.We �rst give a reformulation of the Carleson-measure ondition.Lemma 6.1. Suppose that the Carleson measure ondition (eCpd) holds. Then the measureXk2ZX��0 Æk;� XJ2J k� ard(J)2��(1 + �) dd�1is also a Carleson measure.Proof. We �rst observe thatN(Ek; 2k�j)2k�j � ��ft 2 [2k; 2k+1) : dist(t; Ek) � 2k�jg��and thus(6.1) N(Ek; 2k�j)2�j � CN(Ek; 2k�j0 )2�j0 if j0 � j:19



Let I be an interval of length > 1 and I� the interval with same midpoint and double length. ThenX(k;�)2T (I) XJ2J k� ard(J)2��(1 + �)d=(d�1).Xk2I 1+log2 jIjXs=0 2sd=(d�1) X2s�1��<2s 2�� XJ2J k� ard(J).Xk2I 1+log2 jIjXs=0 2sd=(d�1)N(Ek; 2k�2s�1)2�2s�1.Xk2I 1+log2 jIjXs=0 X2s�2��<2s�1N(Ek; 2k��)2��(1 + �)1=(d�1). X(k;�)2T (I�)N(Ek; 2k��)2��(1 + �)1=(d�1):Here we have used the regularity assumption (1.11) for the seond inequality and (6.1) for the thirdinequality. �The following is an even more elementary observation.Lemma 6.2. Suppose that the Carleson measure ondition (eCpd) holds. Then(6.2) sup� X� XJ2J �+�� ard(J)2�� � C:Proof. Let Is(r) = fx : jx� rj � 2sg. ThenX� XJ2J �+r� ard(J)2�� . 1Xs=0 2�sd=(d�1) X0���2s XJ2J �+r� ard(J)2��(1 + �)d=(d�1). 1Xs=0 2�s=(d�1) 1jIs(r)j X(k;�)2T (Is(r)) XJ2J k� ard(J)2��(1 + �)d=(d�1)and the last expression is bounded by Lemma 6.1. �The following Carleson-measure estimate is a standard onsequene of the Lp boundedness of theHardy-Littlewood maximal operator, for the proof see [14, h. II.2℄.Lemma 6.3. Suppose the doubly indexed nonnegative sequene f!k;�; (k; �) 2 Z�Z+g satis�essupjIj�1 1jI j X(k;�)2T (I)!k;� � Api.e. P!k;�Æk;� is a Carleson measure. Then for fakg 2 `p, p > 1�Xk;� !k;�h 11 + � Xjjj�� jak+j jip�1=p � CpA�Xk jakjp�1=p:We now turn to the 20



L2 estimates in two dimensions. We are onerned with the L2(R2 ) estimates in Theorem III. Thelaim is a onsequene of the following estimates:(6.3)  supk;� supJ2J k� supt2J �� Xj��bJ�aJ>2k�j Ajtf ��L2 . kfkL2and, for m � 0,(6.4)  supk;� supJ2J k�bJ�aj>2k���m supt2J ��A�+mt f ��L2 . 2�m=2kfkL2and �nally(6.5)  supk supJ2J k supt2J �� Xj:bJ�aJ�2k�j Ajtf ��L2 . kfkL2 :To prove (6.3) we use Lemma 2.3 to see that the left side is dominated by�Xk;� XJ2J k� � Xj��bJ�aJ>2k�j k supt2J jAjtf jkL2�2�1=2. �Xk;� XJ2J k� ard(J)2��(1 + �)2h 11 + �Xj�� kP j�kfkL2i2�1=2and by Lemma 6.3 and 6.1 the last expression is ontrolled by�Xk2ZkP kfk2L2�1=2 . kfkL2 :Conerning (6.4) we use Lemma 2.2 and bound the left side by�Xk;� XJ2J k�bJ�aJ>2k�j  supt2J ��A�+mt f ��2L2�1=2. �Xk;� XJ2J k� N(J; 2k�m��)2�(�+m)kP�+m�kfk2L2�1=2. 2�m=2 supl2Z�X� XJ2J �+m�l� ard(J)2���1=2�Xk kP kfk2L2�1=2and by Lemma 6.2 the last expression is . 2�m=2kfkL2 .Finally (6.5) holds in view of the assumption (1.9); f. the argument in the proof of Proposition 4.1.We shall not repeat the details. � 21



Xp estimates and the proof of Theorem III. We use a similar deomposition as in x4 however insteadof onsidering the maximal operatorsM`;� we shall not deompose in ` and work with M� in (4.5) diretly.We shall prove(6.6) kM�FkLpd . 2��(d�1)(1=pd�1=2)kFkXpd :This together with already proved estimates in x4 implies the statement of Theorem III.We argue as before and set al = (PL(Q)=��l jQj1�pd=2kF lQkpdL2)1=pd . Using Lemma 2.3 (ii) we getkM�FkLpd . �Xk X� XJ2J k� h Xj��bJ�aJ>2k�j  supt2J jAjtGj�k� (F )jLpdipd�1=pd. �Xk X� XJ2J k� h X10<j�� 2��(d�1)(1=pd�1=2)ard(J)1=pd2��=pdaj�kipd�1=pd. 2��(d�1)(1=pd�1=2)�Xk X� XJ2J k� ard(J)2���pd� 1�+ 1 X0�j�� aj�k�pd�1=pd :By ondition (eCpd) and Lemma 6.3 and Lemma 6.1 we obtain (6.6). �7. Weak type (p, p) estimates in the limiting aseThroughout this setion we shall assume that d � 3 and that the regularity assumption and ondition(1.14) hold; thus(7.1) supk 2�nN(Ek; 2k�n) � C�n 1d�1 logn��1uniformly in n � 10. We follow the proof of Theorem II in x5, using the same deompositions exept we donot deompose M� in (4.5) further as in the proof of Theorem III. We reall that Proposition 5.1 remainsvalid for the limiting ase p = pd if d � 3, under the weaker ondition (Cpd;1). Therefore the laim inTheorem IV will be a onsequene ofProposition 7.1. Let M�F be as in (4.5). Suppose (7.1) holds. Then there is an " > 0 so that for all�; � � 0,(7.2) meas(fx :M�F (x) > 3�g) . 2�"�pd��pdkFkpdXpd :Proof. As in x5 we �x "0 > 0 and de�ne G, �, A(Q; �), G(F ), B(F ) and W as before exept we replae2"0(�+m)p with 2"0�pd . In partiular we have now for � � L(Q)A(Q; �)1=pd = 2�"0�2�(d�1):We shall have to take "0 so that 0 < "0(2� pd) < d� 2.For M�G(F ) we use an L2 estimate. From Lemma 2.3 (ii) and the regularity assumption (1.11), wededue kM�G(F )k2L2 �Xk X��� XJ2J k� � X��j�� k supt2J Ajt ( XQ2GL(Q)=k�j+� F j�kQ )kL2�2.Xk X��� 2�� XJ2J k� ard(J)� X��j�� 2�j(d�2)=2( XQ2GL(Q)=k�j+� kF j�kQ k2L2)1=2�2. [supk 2��N(Ek; 2k��)℄�X��j 2�j(d�2)=2(XQ2G kF ��L(Q)Q k2L2)1=2�2. 2�(d�2) XQ2G kF ��L(Q)Q k2L2 :(7.3) 22



For Q 2 G we have kF ��L(Q)Q kL2 � Q=jQj1=pd�1=2 � 2"0�(2�pd)jQj1=2�and therefore by �Ceby�sev's inequality and (7.3),meas(fM�(F ) > �g)� ��2kM�(F )k2L2. 2��[(d�2)�"0(2�pd)℄��pdXQ jQj1�pd=2kF ��L(Q)Q kpdL2. 2�"���pdkFkpdXpdfor some " > 0.Furthermore the estimate for the measure of the exeptional set W in x5 is still valid. Therefore itremains to be shown that(7.4) meas(fx =2 W :M�B(F )(x) > 3�g) . 2�"���pdkFkpdXpdfor some " > 0. We may estimate M�B(F ) � III + 1Xs=0 IVs + �1Xs=�1Vswhere III = supk sup��� supJ2J k� supt2J ��� X��j��bJ�aJ�2k�j Ajt� XQ2�L(Q)=k�j+�e"1jk��(Q)j��F j�kQ ����IVs = supk sup����e"1s supJ2J k� supt2J ��� X��j��bJ�aJ�2k�j Ajt� XQ2�L(Q)=k�j+��(Q)=k�s F j�kQ ����; s > 0;Vs = supk sup����e"1 jsj supJ2J k� supt2J ��� X��j��bJ�aJ�2k�j Ajt� XQ2�L(Q)=k�j+��(Q)=k�s F j�kQ ����; s < 0:Here we may hoose 0 < "1 < (d� 2)=2. We then provekIIIkpdLpd . 2��(d�1)(1�pd=2) log(2 + �)kFkpdXpd ;(7.5) kIVsk2L2 . 2��(d�2�"0(2�pd))2�s(d�2�2"1)�2�pdkFkpdXpd ; s � 0;(7.6) kVskpdLpd(RdnW) . 2�M(2�pd)(�+jsj)kFkpdXpd ; s < 0:(7.7)(7.4) follows from (7.5), (7.6) and (7.7) in the usual way. We remark that our assumption (1.14) isneeded for (7.5). For the error terms (7.6), (7.7) we an get away with just the regularity hypothesis (1.11)and (Cpd;1).In the proof we shall use arguments that our in the proof of Hardy's inequality (see [5℄).Proof of (7.5). We further split III =P2n�� IIIn whereIIIn = supk sup��2n supJ2J k� supt2J ��� X2�n�<j�2�n+1�bJ�aJ�2k�j Ajt � XQ2�L(Q)=k�j+�e"1jk��(Q)j��F j�kQ ����:23



We replae various sup's by `pd norms and use Lemma (2.3), (ii). We obtainkIIInkpdLpd �Xk X��2n XJ2J k� h X2�n�<j�2�n+1� 2(j��)=pd2�j(d�1)=p0dard(J)1=pd2��(d�1)(1=pd�1=2)� � XQ2�L(Q)=k�j+�jk��(Q)j�"�11 log � jQj1�pd=2kF j�kQ kpdL2�1=pdipd :If we abbreviate(7.8) w�;k = 2�� XJ2J k� ardJ;bQ;� = jQj1�pd=2kF ��L(Q)Q kpdL2 ;this yieldskIIInkpdLpd. 2��(d�1)(1�pd=2)Xk X��2n wk;�h X2�n�<j�2�n+1�� XQ2�L(Q)=k�j+�jk��(Q)j�"�11 log� bQ;��1=pdipd. 2��(d�1)(1�pd=2)Xk X��2n wk;��pd�1 X2�n�<j�2�n+1� XL(Q)=k�j+�jk��(Q)j�"�11 log � bQ;�. 2��(d�1)(1�pd=2)2�n(pd�1)XQ Xk:jk��(Q)j�"�11 log(2n(k�L(Q)+�)) X�:2n�1(k�L(Q)+�)���2n(k�L(Q)+�) wk;��pd�1bQ;�(7.9)
Now by the regularity assumption ( eRpd) and by (1.14) we haveX�:2n�1(k�L(Q)+�)���2n(k�L(Q)+�) wk;��pd�1. 2n(pd�1)(k � L(Q) + � + 1)pd�1N(Ek; 2k�2n(k�L(Q)+�))2�2n(jk�L(Q)j+�). � log log(22n(jk�L(Q)j+�))��1and thus the expression (7.9) is ontrolled by2��(d�1)(1�pd=2)2�n(pd�1)XQ bQ;� Xk:jk��(Q)j�"�11 (n+log(k�L(Q)+�))(1 + n+ log(jk � L(Q)j+ �))�1. 2��(d�1)(1�pd=2)2�n(pd�1)(log(2 + �) + n)XQ bQ;�:Hene kIIInkpdLpd . 2��(d�1)(1�pd=2)2�n(pd�1)(log(2 + �) + n)kFkXpdpdwhih yields the asserted bound (7.5). 24



Proof of (7.6). We estimate IVs �P2n>� IVs;n whereIVs;n = supk sup����e"1s supJ2J k� supt2J ��� X2�n�<j�2�n+1�bJ�aJ�2k�j Ajt� XQ2�L(Q)=k�j+�k��(Q)=s F j�kQ ����:We apply H�older's inequality for the sum in j and apply Lemma 2.3 to getkIVs;nk2L2 .Xk X����e"1s XJ2J k� 2�n(�+ 1) X2�n�<j�2�n+1�bJ�aJ�2k�j  supt2J ���Ajt� XQ2�L(Q)=k�j+�k��(Q)=s F j�kQ ����2L2. 2�ne"1sXk X����e"1s XJ2J k� ard(J) X2�n�<j�2�n+1� 2�j(d�2)2�� XQ2�L(Q)=k�j+�k��(Q)=s kF j�kQ k2L2 :Now we use 2L(Q)d(1=pd�1=2)kF j�kQ kL2 . 2"0�2�(Q)(d�1)� and that k = �(Q) + s, j = �(Q)�L(Q) + s+ �and derivekIVs;nk2L2 . 2�ne"1s XQ2��(Q)�L(Q)��s kF ��L(Q)Q kpdL22"0�(2�pd)2�(Q)(d�1)(2�pd)�2�pd� 2�(�(Q)�L(Q)+s+�)(d�2)n X����e"1s��2n(�(Q)�L(Q)+s+�)��2n�1(�(Q)�L(Q)+s+�) 2�� XJ2J �(Q)+s� ardJoThe expression f: : : g is O(1) by (1.11). We ompute that (d � 2) � d(1=pd � 1=2)(2� pd) = d(1 � pd=2)and (d� 1)(2� pd) = d� 2. Thus the last estimate simpli�es tokIVs;nk2L2 . 2�ne"1s XQ2��(Q)�L(Q)��s 2L(Q)d(1�pd=2)kF ��L(Q)Q kpdL22"0�(2�pd)�2�pd2�(s+�)(d�2). �2�pd2�n2��(d�2�"0(2�pd))2�s(d�2�2"1)XQ jQj1�pd=2kF ��L(Q)Q kpdL2whih implies (7.6).Proof of (7.7). This Lpd estimate away from the exeptional set follows by analogous arguments; Lemma2.3(iii) is used. We omit the details.This ompletes the proof of Proposition 7.1. �8. Examples and ounterexamplesWe onsider a simple lass of sets E to whih Theorems I-IV an be applied. They satisfy the8.1. Convexity assumption. For eah k 2 Z the set Ek is given by ftk�g1�=1 where tk� is a monotonesequene ontained in [2k; 2k+1℄, so that the sequene tk�+1 � tk� is also monotone.The following lemma shows that if (Cp;1) holds for some p < d=(d � 1) and E satis�es the onvexityassumption; then it also satis�es the regularity assumption for all p > 1.25



Lemma 8.1.1. Suppose E satis�es the onvexity assumption. Suppose that for some � > 0 the estimate(8.1) supk N(Ek; 2k�n) � C 2n(1 + n)�holds uniformly in k 2 Z. Then E satis�es regularity assumption (Rp) for all p > 1 + [(d � 1)(� + 1)℄�1.Moreover it satis�es regularity assumption ( eRd=(d�1)).Proof. We write Ek as a sequene tk� and let Jk� onsist of those t 2 Ek where 2k�� � tk� � tk�+1 <2k��+1 (assuming without loss of generality that the tk� are dereasing in �). We learly have ardJk� .N(Ek; 2k��).Let ak� and bk� denote the endpoints of the equally spaed set Jk� . Let Dk = [�fak�; bk�g, the set ofendpoints. The assertion is implied by the estimate(8.2) N(Dk; 2k�j) . 2j=(1+�):Let L = Lj be the smallest integer � 2j=(1+�). Note that the set [��LjJk� is ontained in an interval oflength . N(Ek; 2k�Lj )2k�Lj . 2Lj (1 + Lj)��2k�Lj . (1 + Lj)��2k:This interval an be overed by intervals of length 2k�j and we need at most (1 + Lj)��2j suh intervalsto do this. But (1 + Lj)��2j . 2j=(1+�).We still need to over the points in Dk whih do not belong to [��LjJk� . But Dk onsists just of theak� and the bk� and there are at most 2Lj . 2j=(1+�) points in Dk whih are not yet overed. This implies(8.2).In order to verify the ondition (1.11) it suÆes to show(8.3) X�>n 2��ard(Jk� ) . 2�nN(Ek; 2k�n):But if ak = inf� ak� = inf Ek then the left side of (8.3) is � 2�k(bkn � ak). Moreover every subinterval oflength 2k�n of [ak; bkn℄ ontains points in Ek and therefore bkn�ak . 2k�nN(Ek; 2k�n); thus (8.3) holds. �Proof of Theorem 1.1. The set Ek = f2k(1 + ���) : � 2 Z+g satis�es N(Ek; 2kÆ) . Æ1=(�+1) andassertion (i) follows from Lemma 8.1.1 and Theorem II. On the other hand, the set Ek = f2k(1+log��(2+�) : � 2 Z+g satis�es N(Ek; 2kÆ) . Æ�1[log(1=Æ)℄�� and assertion (ii) follows from Lemma 8.1.1 andTheorem IV. �8.2. A ounter-example to Lp boundedness for a related maximal funtion.Let E0 be any set in [1; 2℄ and de�ne the modi�ed maximal funtionfME0f(x) := supr2E0 f � d�(x + re1)in Rd , where e1 is a unit vetor. If E0 satis�es the regularity assumption (Rp), p < d=(d � 1) then theondition Cp;p is neessary and suÆient for Lp boundedness of fME0 ; indeed a notational modi�ationof the proof of Theorem I applies to show the suÆieny. Note that for sets E0 supported in [1; 2℄ theonditions Cp;p and Cp;1 both amount to the inequality N(E0; Æ) . Æ�(d�1)(p�1). However Lp boundednessand indeed the weak type (p; p) property may fail if we drop the regularity assumption.26



Let E0 be the middle-halves Cantor set onsisting of all t = 1 +P1j=1 bj4�j where bj 2 f0; 2g. Thenthe Minkowski dimension of E0 is 1=2 and fME0 is bounded on Lp(R2 ) for p > 3=2 and unbounded onLp(R2 ) for p < 3=2. Moreover Cp;p holds for p = 3=2. We show that nevertheless fME0 is not of weak type(3=2; 3=2).Let N be large and de�ne f(x) := NXi=1 4i�2Ce1+B(0;a4�i)(x);where C is the Cantor set C = fPj j4�j : j = 0; 1g and a is small. Note that kfk3=2 . N2=3 (eah iontributes an L3=2 norm of O(1), and the ontributions are mostly disjointly supported).Now E0 + C �lls out the interval [1,2℄ and thus the maximal funtion fME0f has size about N on a�xed portion of the unit annulus, thus kfME0fkL3=2;1 � N . This shows that fME0 is not of weak type(3=2; 3=2). A loser examination shows that f belongs to the Lorentz spae L3=2;s with norm O(Ns) sothat fME0 fails to map the Lorentz spae L3=2;s to L3=2;1 when s > 1. Unfortunately this example is toorigid in order to apply to the maximal operatorME0 onsidered in this paper.8.3. Failure of restrited weak type (2,2) in two dimensions. We shall now turn to the ounterex-ample mentioned in the introdution and give a proof of Proposition 1.5.Suppose that there is a large onstant B so that there exists k and n � 100 suh thatN(Ek; 2k�2n) � B22n=n:We then show that kMEkL2;1!L2;1 � pB for some absolute onstant . By resaling we may assumek = 0 and n� 1.We use the onstrution of a Kakeya set as given by Keih [6℄, resaled to a square of sidelength 2�n.It gives us � 2n retangles Rl with sidelengths 2�n�3 and 2�2n�6 so that Rl � [�2�n; 2�n℄2 and the longerside of Rl is parallel to el := (os l2�n; sin l2�n), and the union A = [Rl has measure . 2�2nn�1. Thusk�AkL2;1 � k�Ak2 . 2�nn�1=2.Let fI�gN�=1 be a over of the set E0 by dyadi intervals of length 2�2n, with disjoint interior so thatN � B22n=n. Let I� = [a� ; b� ℄, and assume a� < a�+1. We then pik every tenth interval = I10� , moreoverwe pik every tenth retangle R10l in the above Kakeya onstrution. Let e?l := (� sin l2�n; os l2�n) andlet Rl;� be the translate a10�e?10l +R10l. Then the retangles Rl;� are disjoint, however on a tenth frationof eah of these retangles we have that ME�A(x) > 2�n. There are � N2n=100 suh retangles andthus meas�fx :ME�A(x) > 2�ng� � 0N2n2�3n & Bn�1;but on the other hand k�Ak22=(2�2n) . n�1 so that the L2;1 ! L2;1 operator norm is & pB. This provesthe proposition. � Referenes1. J. Bourgain, Estimations de ertaines fontions maximales, C. R. Aad. S. Paris, 310 (1985).2. , Averages in the plane over onvex urves and maximal operators, Jour. Anal. 47 (1986), 69{85.3. S.Y.A. Chang and R. Fe�erman, The Calder�on-Zygmund deomposition on produt domains, Amer. J. Math 104 (1982),445{468.4. M. Christ, Weak type (1,1) bounds for rough operators, Annals of Math. 128 (1988), 19{42.5. G. Hardy, J.E. Littlewood and G. P�olya, Inequalities, Cambridge Univ. Press, Cambridge, 1952.6. U. Keih, On Lp bounds for Kakeya maximal funtions and the Minkowski dimension in R2, Bull. London Math. So 31(1999), 213{221. 27
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