RIESZ MEANS ASSOCIATED WITH CONVEX DOMAINS IN THE PLANE

ANDREAS SEEGER SARAH ZIESLER

1.Introduction

Let Q be a bounded open convex set R?> which contains the origin. Let p be the associated
Minkowski functional defined by

p(§) =inf {t >0:t'¢ € Q}.

We shall investigate the Riesz means of the inverse Fourier integral associated with

(1) Raaf@) = oy [ (1= 2 fgerenag
(2m)* Joey<t t

here our definition of the Fourier transform is f(f) = ff(y)e_i<y’5>dy. For t = 1 we also set
R = Ry,1 and refer to Ry as the Bochner-Riesz operator associated with €. Note that for A =0
the Riesz means R are just the partial sum operators associated with the sets €2, ¢ > 0, while for
A = 1 one recovers the Féjer means, namely the averages Ry = ¢t~ fot Ro,sds. The objective is to
prove that R . f converges to f in LP(R?), for suitable 1 < p < oo; for p = 0o one has to replace L™
by the space C°(IR?) of continuous functions with lim || o0 [f(z)] = 0. The main step is to establish
the LP boundedness of Ry (and, equivalently, of Ry ¢).

If Q) is the unit disc in R? explicit calculations show that the convolution kernel of Ry belongs to
LP(R?) if and only if A > 2/p — 3/2. In particular R, is bounded on L? for 1 < p < oo if A > 1/2 (a
result which goes back to Bochner), moreover R is unbounded if p ¢ (px,p)\) where py = 4/(3 + 2))
and p\ = px/(px—1) is the conjugate exponent. Fefferman [6] showed that the partial sum operator
Ry is bounded on L? if and only if p = 2. The best possible result for all A € (0,1/2) was proved
by Carleson and Sj6lin [3] who obtained LP boundedness for py < p < p) (see also Fefferman [6],
Cérdoba [4] for different proofs).

Various generalizations of these results have been considered in the literature; in particular Sjolin
[19] proved the analogous LP inequalities for Bochner-Riesz multipliers associated to an arbitrary
compact C'* curve in the plane.

In this paper we consider the case of Riesz means associated with conver domains, with no extra
smoothness assumption on the boundary Q. Only the Féjer means have been considered in this
generality; see [12] where LP boundedness for 1 < p < oo is proved. We shall in fact show that all
the above mentioned sufficient results for the unit disc remain true in our more general setting; these
results are necessary and sufficient for convex sets with smooth boundary. Moreover we shall show
how these results can be improved for some classes of convex domains with nonsmooth boundary.

In order to formulate this improvement we need to introduce a version of upper Minkowski
dimension of the boundary 99 with respect to a suitable families of caps or “balls”. The use of
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these families is motivated by the estimates of Fourier transforms of measures carried by convex
surfaces, see Bruna, Nagel and Wainger [2].

Let P € 09 and let £ be a line through P. Let Hp(f) be the closed half-plane with boundary ¢
which contains the origin. We say that £ is a supporting line for Q at P if Q C Hp(f) and denote by
T (2, P) the set of supporting lines for  at P. Note that 7 ({2, P) consists precisely of the tangent
line through P if © has a C! boundary.

Let P € 99Q. For any supporting line ¢ through P and ¢ > 0 we define
(1.2) B(P,¢,6) ={Y € 00 : dist(Y, ¢) < d}.

Let Bs = {B(P,£,0) : P € 00,£ € T(R, P)} and let N(2,4) be the minimal number of balls B € Bs
needed to cover 9). Let
log N (€, 0)

1.3 =1 —_—
@3 o s S

this is our version of upper Minkowski dimension. It is not hard to see (¢f. Lemma 2.3 below) that
0< kg <1/2.

In what follows Q will always be an open convez set in R? containing the origin. Our main result
is:

Theorem 1.1. Suppose that1 < p < oo, A >0 and A > ko(4|1/p—1/2|—1). Then Ry, is bounded
on LP(R?).
Suppose f € LP(R?) if p < oo and f € C°(R?) if p = co. Then

lim [[Ryef — fllp = 0.

The L' result of Theorem 1.1 has the following counterpart for pointwise convergence which
follows from the weak type (1,1) bound for the appropriate maximal operator.

Theorem 1.2. Suppose that f € L'(R?), A > kqo. Then lim;_o Ra+f(x) = f(z) almost every-
where.

It is well known that Theorem 1.1 is sharp if the boundary of €2 is smooth; then R, ; is bounded
on L? if and only if A > max{0,2|1/p — 1/2| — 1/2}; in fact the necessity of this condition follows
from Theorem 3 in [11] if Q has merely C? boundary. This is the minimal smoothness assumption
to ensure ko = 1/2 since for every a € (0,1) there exist convex domains  with C*® boundary and
ko = af(a+1) < 1/2. In §4 we construct domains with this property for which Theorem 1.1 is
sharp:

Theorem 1.3. Let 0 < k < 1/2. Then there exists a convex domain Q, with C*T= boundary

satisfying ko = Kk so that for 1 < p < 4/3 the operators Ry associated to Q) are bounded on LP(R?)
if and only if A > k(4/p —3).

Remarks. 1. If  has a C* boundary then Theorem 1.1 is a special case of Sj6lin’s theorem [19]
(the previously proved Carleson-Sjdlin theorem [3] covered the case of domains with nonvanishing
curvature; see also [9] for the case of finite type curves). If Q has C? boundary then there is a
point on 9 where the curvature does not vanish and working near this point one easily checks that
ko = 1/2 in this case. We remark that Sj6lin’s proof relies on the assumption v € C'* since it uses
approximation to reduce the general case of smooth functions to the case of polynomials. It would
be interesting to investigate whether the smoothness assumption is needed in the nonconvex case.
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2. Podkorytov [12] showed L! convergence of the Féjer means (for A = 1) associated to arbitrary
convex domains; this can be improved to the condition A > 1/2 (since kg < 1/2 in Theorem 1.1). A
different extreme case occurs when ko = 0, in particular if Q is a convex polygon. This particular
case was considered before; Podkorytov [13] proved L' convergence for Riesz means R ; associated
to arbitrary (not necessarily convex) polyhedra in R™, for every A > 0. The corresponding result for
pointwise convergence was worked out by one of the authors in [17] using the method in [13] and a
result by E. Stein and N. Weiss [22] on adding weak type functions; ¢f. also the more recent paper
[1].

3. Intermediate rates for Lebesgue constants of trigonometric series, for certain polygonal do-
mains in the plane with infinitely many vertices, were found by Podkorytov [14], and by A. and V.
Yudin [24]; their examples are related to the example discussed in §4.

4. Let 1 < pp < 4/3. It would be interesting to find convex domains for which R, is bounded
in L? for all A > 0 if and only if py < p < pj.

5. Our method also applies to multipliers of the form x(&)(& —v(&))2 if v is a convex function
or x(&)dist(¢,T)* if T is a convex curve; here x € C§°. Moreover the subordination formula (4.19)
below allows the extension to more general multipliers of the form m o p.

Notation: The Fourier transform of f is denoted by f, the inverse Fourier transform of f is
denoted by F~*[f]. By C° we denote the space of continuous functions with lim, . |f(z)| = 0.
By C§° we denote the space of smooth functions with compact support. By C*® we denote a space
of differentiable functions whose derivatives are Holder continuous with exponent a. Given two
quantities A and B we write A < B if there is a positive constant C, such that A < CB. Such
constants may depend on the number M in (2.1) below. We write A ~ B if A < B and A > B.

Acknowledgement: The second author would like to thank both Carlos Kenig and Tony Carbery
for valuable conversations relating to this work.

2. Convex sets and plane geometry

Let © be an open convex domain in R? containing the origin. Since the statements of Theorems
1.1 and 1.2 are invariant under dilations and since p is homogeneous of degree 1 it is no loss of
generality to assume that the closed ball of radius 4 centered at the origin is contained in Q. Then
there is an integer M > 3 so that

(2.1) {¢-lgl<4apcacacie: g <2My

this is henceforth assumed.

Let u, , u be orthonormal unit vectors, so that det(u,u) =1 and define the half strip
(2.2) Sy = {&: [(§ur)] <2,(u) <0}

We now give some properties of the boundary 92 relying on elementary facts on convex functions
(see e.g. [10, §1.1]).

Lemma 2.1. 90N &, can be parametrized by

(2.3) ttug +y(tu, —-2<t<2
where (i)
(2.4) 2M < ()< =2, —2<t<2
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(ii) v is a convex function on [—2,2], so that the left and right derivatives ~v; and vy exist
everywhere in (—2,2) and

(2.5) —2M= <A (1) < R < 2MT

fort € [=2,2]. The functions v;, and vy are increasing functions; vy, is left continuous and vy is
right continuous in [—2,2].

(i5i) Let ¢ be a supporting line through £ € OQ and let n be an outward normal vector (e.g.
normal to £). Then

(2.6) (€ ny >2-Mg|.

Proof. By assumption (2.1) the line segment {su, : |s| < 4} is contained in Q. Now fix s with
|s| < 2 and consider the ray {su; — Ru : R > 0}. For any point P € Q which is on this ray the
line segment connecting P to su; also belongs to 2. Hence there is exactly one point on this ray,
which is also a boundary point. Therefore there is a function ¢ — y(¢) on [—2,2] so that 002N &,
can be parametrized by (2.3) and (2.4) is satisfied. Then v is a convex function; for the existence
and continuity properties of left and right derivatives see [10, §1.1].

In order to obtain the bounds on the derivatives fix ¢, € [—2,2]. One notes that the intersection
of Q and the ray through tou, +7(to)u starting at 4u is precisely the line segment connecting those
two points; an analogous statement holds with 4u replaced by —4w . This implies for ¢,t € [—2, 2]
that

4+t0(t—t0)<7(t)—7(t0)§ -1 (t —to), to <'t,
T 1y — ) < o0) - 1000) s 00—, 15t

and (2.5) follows from (2.4).

In order to see (2.6) we choose u = £/|{| and parametrize 092 near ¢ by (2.3) (the function ~y
depends of course on u). The vector n is given by

1
T e

where 77,(0) < o < 73(0).

Since (¢,n) = |€|(1+ %)~ 1/? the assertion (2.6) is an immediate consequence. [
It will be useful to approximate convex domains by smooth ones.

Lemma 2.2. Suppose that Q0 satisfies (2.1). There is a sequence of convexr domains ,, containing
the origin, with Minkowski-functionals p, (&) = inf{t : £/t € N, }, so that the following holds:

(i) Qp C Qg1 C Q and U,Q, = Q.
(ii) pn(&) > pny1(&) > p(§) and

in particular lim, oo pn(§) = p(§), with uniform convergence on compact sets.
(#5i) Qn has C* boundary.



(iv) If § > 272 then
(2.7) N(Q0,26) S N(2,0)
where N(Q,0) denotes the covering number for the boundary as defined in the introduction.
Proof. We first approximate the boundary of (1 — 4 ™)Q = {£ : p(§) < 1—4""} by a convex
polygon. Let 8, = 27v4=""M and let u” = (cosf,,sinb,), u? = (—sinf,,cosb,). Let P, = —R,u”
where R, is such that p(P,) = 1—47". Let Q, be the polygon with vertices P,, v =0, ...,4"*M _1.
We wish to smooth out the boundary near the vertices and therefore modify this boundary only on
a small part in the narrow half strips

& = {¢: [(&u)] <167 M (€ u”) <0}

Define 7, (t) = =R, + ¢t if t > 0 and 4, (t) = —R, — ¢, t if t < 0 where the slopes ¢ are chosen so
that the portion of the boundary which is in & is parametrized by ¢ — tu’ +7, (t)u”, |t| < 16" M.

Now let € C§°(R) be an even nonnegative function supported in (—1/2,1/2) so that [ n(t)dt =
1. We define

Y (t) = /64”+M17(64”+M5)7,,(t — s)ds.

Since 7 is even it is straightforward to check that 7, (t) = 7,(t) when 327 "~M < |¢| < 167"~ M,
Replacing Q2 NS, parametrized by 4, by the curve parametrized by -, yields a convex domain €,
with the required properties. If 2772 < § and {B;} denotes a cover of  with ”balls” of the form
(1.2) then the balls with double height cover the boundary of Q,,. This yields (2.7). O

A decomposition of the boundary. Let &, be as in (2.2). We introduce a decomposition of
90N &, in order to use the geometric properties of I in terms of the covering numbers N(Q,6);
we assume that § < 27'90~M  Consider the parametrization of 92N &, by (2.3). We define a finite
sequence of increasing numbers
Q[u((S) = {a(), sy aQ}
inductively as follows. Let ap = —1. Suppose ao, ...,a;—1 are already defined. If
(t —aj—1)(vp(t) = Yr(aj—1)) <0 for all t € (a;—1,1])
thenlet a;j =1ifa;_; <1— 2 M§ and a; =aj_1 + 2-Mg if aj_1 >1-— 2-M§. Otherwise define
aj = inf{t € (a;_1,1] : (t — a;—1)(VL(t) — YR(aj-1)) > o}
Since |71, |7k | are bounded by 2M 1 we see that |t —s||v} (t) —vk(s)| < if |t—s| < 627 M; therefore

the first case occurs after a finite number of steps. We obtain a sequence ag < a1 < --- < ag with
so that for j =0,...,Q — 1

(2.8.1) (aj+1 — aj)(vp(aj41) — Yr(az)) <6,

andfor0<j<@ -1

(2.8.2) (t —a;)(vp(t) = VR(ay) <6, if  t>aj.

Condition (2.8.1) is satisfied since v} is left continuous.
It will also be convenient to define

(2.9) Aa(6,1) = {a; € Aa(8) : 27" < ajpy —a; < 2771,

where r € N so that 274§ < 27" < 1. Note that 20,(8) = U2, (8, 7).

The number @ in (2.8.1/2) is also denoted by Q(0) or Q,(d) if it becomes necessary to indicate
the dependence of § or u.

The following Lemma relates the numbers @, () to the covering numbers N(Q, §).
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Lemma 2.3.
There exist a positive constant Cyr, so that the following statements hold.
(i) Qu() < Crrd™'/2.
(i) 0 < kg < 1/2.
(iii) Q. (0) < CpyN(Q,6)log(2 +871).
(iv) For v=1,...,2°™ let u,, = (cos(2mv272M) sin(27rv272M)). Then

Ci N(9,6) <)~ Qu,(6) < CurN(Q,8) log(2 + 671).

Proof. For (i) apply the Cauchy-Schwarz inequality and (2.8) to obtain

Q-1
Q-1<677% (4 —a;-1)* (v, (a5) = Vr(aj-1))'"”
=1

e Q-1 1/2 Q! , ' 12
<5 (Zaj_ajfl) (ZVL(%‘)_W(‘””))
j=1

j=1
< 4.9M/251/2,

(ii) is an immediate consequence of (i).

The left inequality in (iv) follows easily from the definitions once one observes that for a slope
o > vr(a;) we have

Wasn) =1(a) —olager —a) = [ (/(6) — s

J

(2.10) < (Vp(@41) = Yr(a5)) (@541 — aj).

The other inequality in (iv) follows from (iii). For the proof of (iii) pick ro (with 270 < 2M§-1)
so that among the sets 2, (0, r) the set 2, (4, r9) has maximal cardinality Qo. Note that

Qu(9)
(M +1log(2+6-1))°

Q022

We may assume that Qo > 2M+100 (otherwise (iii) follows easily). We may split 2, (d, 7o) into not
more than 2'0+M families A7 (8,r9) with the property that for every choice of different a;,ar €
A™(8,79) there are at least 22°+M numbers a; € 2,(5,70) between a; and a.

In order to verify (iii) we have to show that
(2.11) Qo < ey N(Q, ).

We now fix aj,a, € A} (6,70), a; < aj. Let to € [a;,a;41] and let £ be a supporting line for
at Py = touy + y(to)u. Pick any ¢, € [ag,ar+1] and let P, = tyu; + y(¢1)u. Observe that (2.11)
follows if one can show that the distance of Py to £ is greater than ¢. This we now verify. If o is the
slope of £ then o < v, (t9) and ou; — u is the normal to ¢ which is outward with respect to €. Then

1

dist(Py,£) = ﬁ(’ﬂh) —7(to) — o(t1 — to))
(212) > ﬁ(wl) —(to) = Va(to) (t1 — t0))

6



By definition of 2AT(8,r9) we may pick L = 2M*° intervals [c;,d;] with aj1 < ¢1, dp
277 <dp —¢; <2772 (v (di) — YR(ei))(di — ¢;) > 8. We set dy = ajq1, cp+1 = ag. Then

Y(t1) = v(to) — Y (to)(t1 — to)

L
= (t1) = y(crs1) = Vr(to)(tr — cr1) + > [ V(civ1)
=0

L
+ 3 [ = v(es) = Vi lto) (@i = i) +7(do) = (ko)

(d:) = Vp(to) (civr — di)]

— Yr(to)(do — to)

i=1
L L
Z[v —Vr(to)(di = )] > D7 |1 () = V() (di — )] > (L—1)3
i= =2
and thus, since L = 2M+5,
L-1
dist(Py, ) > ———6>6. O
Y

< ag,

The following Lemma is concerned with a disjointness property for algebraic sums of balls of the
form (1.2). This will be used in the proof of the L* estimate in §3, using an orthogonality argument

due to Fefferman [7].

Lemma 2.4. Let B > 1 and A,,(d,7) as in (2.9). Let a be a subset of Ay (d

that

(2.13) aj€a, apeca, a;j<ag — k—j> 2'9B.

Let I; = [a; — 02 M aj41 + 627 M] and

(2.14) G ={¢: (G ur) € I, [(§u) —v((§ ur))| < Bo}

, 1) with the property

Then for any £ € R? there are at most two pairs (j, k) with aj,ar, € a so that & belongs to Gj + Gy.

Proof. We may assume u; = (1,0), u = (0,1). Suppose without loss of generality that

(2.15) €€ (Gj+Gr)N (G +Gr), J<k, m<n;
we shall then show that j = m, k = n. Now £ = (&, &) with

(2.16) §1 = aj + o = am + g, o € I, i = j,k,m,n,
and

(2.17) & = v(ay) +y(ar) + (t; + te)9,

(2.18) & = y(am) +y(an) + (tm + tn)0,

with

[ti| < B fori=j,k,m,n.
Recall that 277 > 62~ and therefore

log — a;] < 027 MHL L 27 H <272 for o € T
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We shall distinguish three cases.
Case I: aj = ay, Gy = ap.

In this case by (2.16) |a; — anm| < 277+ and the condition (2.13) implies a; = a,, and therefore
aj = ap = Qm = Gn.

Cuse II: Suppose a; = aj, Gm < an. We show that this case does not occur if (2.13) and (2.15)
hold. Without loss of generality we may assume that a; < ay.

The interval [a,,+1,a,] contains at least 2! intervals of length 277, in particular

2a; > a; + oy — 27—t an -2 > a,, +a, — 27"

Z 2am _ 27'r'+4 + B2107’r‘ Z 2am+1 _ 27'r'+5 + B2107’r‘

hence a; > amy1 +27". A similar argument shows that a; 11 < a, —27". Thus I; C [am+1,a,] and
in particular (o + ag)/2 € [am+1,an]. By (2.17) and (2.18)

|7(an) + ’Y(am) - ’Y(aj) - ’Y(Clk)| < 4Bé.

Choose 3;, Bk € [aj,aji1] so that |8; — a;| <627M and |8y — ax| < 627M. From

(8 — 222y 4 (80) < (4480 108 (B B)
< (vp(aj+1) = vr(a;))(aje1 —aj) <0
we see that also '
7es) = 21 E) 4 ()] < 6+ 427Vl [l < 36
and therefore
(2.19) en) = 29 4 (am)| < (4B +3)5,
Now oy,
viaw) =25 4 a(am) = [, (oo =0k + [T i

plus a remainder term (o + g — oy — am)vﬁ(@) which vanishes in view of (2.16).

By the assumption on a at least one of the intervals [a,, 23] [2itar

[a; — €,a;11 + €] with 277 < a;41 —a; <2771 and 0 < e < 27771 so that

,ap] contains an interval

(2.20) am +28"B <a; < a1 <ap,—2%"B

Suppose first that [a; — €, a;41 + €] C [am, a";a’“]. Then by (2.19)

ajtay

(4B + 3)5 > / T (= am)dyk(D)

am

Y%

aiy1+te
[ @ o - 2 Moy
a

i—€

(@i — amsr — 27M8) (Vg(ais1 +€) — yR(a; —€))
a; — Qm4-1

> (ai —am L(@it1 +€) —vg(ai—€) =6 > —————0 —
> ( +1) (VL (@ir1 + €) = Yr( €)) = Qi1 —a; + 26
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Therefore a; — am, < a; — a1 +27"7 < (4B +4) (27" 4+ 2¢) < B27"5 in contradiction to (2.20).

ajtag
2

Similarly if [a; — €,a;41 + €] C | ,a,] we deduce that a, — a;; 1 < B2 "% again in

contradiction to (2.20).

Case III. We now suppose that a; < ay, am < a, and show again that this case does not occur.
Without loss of generality m < j which then implies by (2.13) that ., < o; < ar < ap.

Since a,, = a;j + o — oy, We obtain

0< /%‘ (7}%(% +ap—u)— 'y}%(u))du = v(am) + v(an) — v(a;) — y(ag) < 4B§

where the last inequality follows from (2.17-18).

If u € [am,q;] then (o), ar] C [u,& — u] and, by our assumption on a, o, ] contains an
interval [a; — €,a;41 + €] with 27" < a;11 —a; <277 and 0 < € < 27"~!. We conclude that

4mz/(ﬁ@+%—w~mmm

m
aj — Oy

aj
> ! . _ At A dy > ——— —
> [ Gl + 0 = vl = du > =2

m

and therefore aj; — ay, < @j — ap, + 27772 < 4B(277F! + 2¢) + 2772 < 2577 B in contradiction to
(2.13).

Thus only Case I can occur and the Lemma is proved. O

3. Estimates

Our first Lemma in this section is used to prove estimates for ho p where h is sufficiently regular.
The bounds (3.2) are not best possible; they will be used later to consider error terms in the proof
of Proposition 3.2 below.

Lemma 3.1. Let h be an absolutely continuous function on [0,00) and suppose that lim;_,~, h(t) = 0.
Suppose that s — sh'(s) defines an L* function on [0,00) and let

F(r) :/ h'(s)eds.
0
Suppose that > 0 and that
(3.1) |F(7) + |F'(T)] < B(1+|r]) "

Let B(0, R) be the ball with radius R and center 0, and define A, = B(0,2%)\ B(0,2%71), for k > 0,
and Ao = B(0,1).
Then

(3.2) / sup |F[ho 2)(a)|dx < B[2 D) 4 g2 k).
Ay 1/2<t<2 t

Proof. Denote by do surface measure on ¥, = 02 and for € 9Q by n the outward unit normal
vector. We shall first assume that ¥, is a C? surface, but the bounds will depend only on the Lip(1)
norm of parametrizations.

9



We begin following Hlawka [8] and Randol [15]. Using integration by parts and the divergence
theorem applied to the vector field ¢ — (is)~!|z|2ze**{*:€) we obtain

en A = [ np(e/etOas
Q
=— [ =8 - “Ip/(s/t)ds d
Jyee [ e

= —t—l/ooo W (s/t) /Q "8 de ds
— 41 > hl 2 i(z,sg)d d
t /0 (s/t)s /Qe & ds
3.3 =it~ |z 2 n' (28 (g, do(€) ds.
(3.3) it ]al / h'(s1) /8 e (@) ds

Let Y € C*°(R? \ {0}) be supported in a sector

S={5:|<%,u>+1|s<e}

where u is a unit vector and e is small; the choice

(3.4) e < 27102M

will certainly suffice. Let u be the unit vector perpendicular to u, so that det(u,,u) = 1. Then
X,NS can be parametrized by o — u a+uy(a) so that (2.3)-(2.6) holds. Set x(a) = X (v a+uy(a));

then x(a) = 0 for |a] > 2710"M Tn S we introduce homogeneous coordinates (i.e. polar coordinates
associated to 9Q) given by

(3.5) (s,a) = &(s,a) = s(uLa+uy(a))
with & = uy(0) with 4 < —y(0) < 2M; then

plura+uy(a)) =1.
Note that for the Jacobian of the map (3.5) we have

9¢

det (B(S,a)

) = s(e' (@) = v(@)

which is bounded below by 2s on the support of x (since —y(a) > 4 — 2Me > 3 and |ay'(a)| <
22M g < 2710 where ¢ is as in (3.4)). Let

Ki(z) = it~ |o| 2 / " b (1) /8 e () YO (€ ds

and let R, be the rotation with R,e; = u,, Ryes = u. Using a partition of unity we see that it
suffices to estimate

(36) Ki(Ryw) = it [z /OOO sh!(s/t) / eir(mate2 (@) () — 315/ (a))x(@) (@7 (@) - 7(a)) da ds.
10



Let n € C*°(R) be an even function supported in [—¢, €] so that n(a) = 1 for |a| < e/2. We split
Ki(Ryz) = K1 () + Ki 2(x)
where
(3.7 Kii(z)=

it ol [ st (sfe) [ et @ -y @) E)x (@) @y (@) - (a) dads
0 1519

and K is defined in the same way, with n(---) replaced by 1 —n(---).
In (3.7) we interchange the order of integration and see that

(38)  [Kia(w)| < Btla|™ / n(EEO) Bty + t2a9(0)) (22 — 217 (@) x(e)] da.

||

If n(w) # 0 then |zo| > |21|27M 1 and, since |a| < 2¢,

[z]
(3.9) |z1a + z2y(@)] > |z2||y(a) — ay' ()] — 2M+2E|x| > 2—M—1|m|
and it follows from (3.1) and (3.8), (3.9) that

sup | Kyq1()] S Bla| ™"

1/2<t<2
and hence
(3.10) / sup Ky (2)|de < B2HH)
A, 1/2<t<2

In order to estimate Ky o(z) we integrate by parts with respect to a. This yields

1
Kio(z) = |a:|_2/ t_lh'(s/t)/eis(”“o‘”””(a))aag(:ﬂ,a)da ds
0

= t|z| 2 /F(twla + tx2y(a))0ag(x, a)da

with
(2 — 217/(@))(1 - n(22))3 () (07 (2) — 7(a)
z1 + 27y ()

g(z, ) =
Notice that |21 + z27'(«)| > ¢|z| in the support of 1 — n(---). This yields
0ag(z, )] < Car(1+[7"(a)])

and consequently, using also (3.1), we obtain for k£ > 1

[ sw (K@i s [a+ @D [l 20+ e+ sl drdo
Ap 1/2<t<2 A

11



The inner integral is O(2 ) if y < 1, O(2 *k) if g = 1 and O(2 %) if p > 1. By convexity
[ 17" (@)]da < 2M and hence

(3.11) / sup  |Kio(z)|de < Bmax{27% k27F).
Ap 1/2<t<2

The estimate follows from (3.10) and (3.11).

Finally in order to remove the assumption of a C? boundary we can approximate the domain
Q) by an increasing sequence of convex sets 2, with smooth boundaries, so that the C' bounds
for parametrizations of the boundary are uniform in n. The estimate (3.2) holds then for p, with
bounds uniformly in n. The Minkowski functionals p,, associated with €2, converge to p, uniformly
on compact sets and therefore the estimate (3.2) holds for p as well. O

We shall now investigate the multiplier (1 — p)j\i_ near the boundary of ; it suffices to consider
(1- p)j‘_b where b is supported in a narrow sector. Since the number kq is invariant under rotations,
there is no loss of generality to assume that this sector contains u = (0, 1).

Proposition 3.2. Let Q be a convexr domain as in (2.1) and let b € C§° be supported in the sector
S =1{&:1&4| <271M &5 & < 0}, Let a v (a,y(a)) be the parametrization of 92N S as a graph,
as in Lemma 2.1. For any subinterval I of [—1/2,1/2] denote by I* the interval with same center
and with length 4/3|I|. For £ > 1 let 3, be the set of subintervals I of [—1,1] with the property that
|I| > 27°M qnd

(3.12) (t —8) (7} (t) = YR(s) <275 for s < t, s,t € I*.

Let B be the set of C? functions 3 supported on (—1/2,1/2) so that

(3.13) 1BR @) <1, k=0,...,4.

(i) Suppose I = (er —|I|/2,er +|1]/2) € Jy. Let

(3.14) m(€) = b(&)B (2 (1 = p(€)B2(I11 ™ (&1 — 1))
where 31,02 € B. Then
(3.15) / sup  |2F " [m](t)|de < 277,
|| >210¢ 1/2<¢<2
Moreover
(3.16) / sup  [|F[m](tz)| + |[VF [m](tz)|]dz <1+ L.
1/2<t<2
and
(3.17) / sup | F ' m](tx — ty) — F ' [m](tz)|dz < (1+0)°.
|| >2]y| 0<t<oco

(ii) Denote by mg, g, 1 the right hand side of (3.14) and let

(3.18) Mf(x) = sup sup |[F [mg, 5,1 f)(@)]-
B1,826B I€T,
12



Then
199 fll2 S (L+ 0| fll2

for all f € L?>(R?).

Proof. Again we first assume that v € C? but our bounds will only depend on the L*™ norms of v
and ~'. This restriction can then be removed by using Lemma 2.2.

We shall now fix 4; and (3 and set he(s) = 31 (2¢(1 — s)). Let

:/ he(s)e'Tds and Ae(7) :/ hy(s)e*ds.
0 0

Then
(3.19.1) [Ae(r)| + [AY ()] S 2751+ 277~
(3.19.2) A + [N S @ +27 )~

by an integration by parts.

We apply Lemma 3.1 to h = hy and pp = 2 (so F = A, in (3.1)). Since the right hand side of
(3.19.2) is bounded by 22¢(1 + |7])~2 we obtain

(3.20) / sup  |F L[y o Ll(x)|de < 22k27F;
Aw 1/2<t<2 t

this is certainly a favorable estimate if k¥ > 10£. The Fourier transform of b(¢)B2(|I|7' (&1 — er)) is
pointwise bounded by a constant times

1| L

H =
1) = T e T+ 23

and since |I| > ¢27¢ it is straightforward to verify (3.15).

We now give a different estimate for the integral over the dyadic annulus Ay, which is used to
derive an improved bound for |z| < 2'%¢. Let 3 be a C8° function so that 3(¢) = 1 for |t| < 9/16
and 3(t) = 0 for |t| > 5/8. Let B;(t) = B(II|7*(t — ¢;)) so that

supp(Br) C I

Note that |£;| < 278 on supp(b) (since |£] < 2M and |& | < 271M|&)). If also |& —cr| < |I]/2
and |1 — p(&)| < 27¢*! then

—C
SO < | S |- pl)] e - enl <2 2 < 1+

here we used that |I| > 27> and M > 3. Consequently

Br(&/p(€)) = 1if Ba(|T]71 (& —er)) # 0 and |1 — p(€)] < 27
Therefore we may write
m(&) = b(©)B(1]7" (& — er))m(€)

with m(€) = B1(2°71(1 — p(€))Br(&1/p(€)) and estimate the Fourier inverse of .
13



Let n be as in the proof of Lemma 3.1, namely smooth and supported in (—¢,¢) where € is small
(as in (3.4)). Let ¢p be smooth and supported in [—1,1], so that ¢o(s) = 1 for |s| < 1/2. Define

1 + 227 ()
||

Oz, @) = (027" HI|(21 + 227 (@) = Po (27" I|(21 + 227" (@)))) 1(

@o(z, ) = go(|T|(z1 + 227" ()))n( )

1 + :Ug'y'(a))
||

We write the Fourier integral representing F~![m(¢~!:)](z) using coordinates £ = s(a,v(a)).
Then we split the kernel

(3.21) FR ) = G [Rile) + 3 sl

where 7

(3.22.1) Kni(z) = / she(s/t) / B, (z,0)fr(a)(v(a) — oy (a))e?*@rotz27(@) 4o ds

and

(G222) Riw) = [shuls/o) [0~ n(%j”a)»mm(a) — ' (@)e et (@) do ds

Note that the sum in (3.21) has only O(log(1+ |I||z])) terms since K, +(z) = 0 if e|z| < 4]I|712".
In particular if x € A Nsupp(K,,) then 2" « 2¥|I|. The kernel Ky is given by

Koy(x) =i~ 't? / Aj(t(zra + z27(a))) o (2, a)Br(a) (v(e) — ' (a))da.

1

Since det <’y(a) V(@)

> ~ 1 we may estimate
(3.23)

/ sup |Koq(z)|dz < 2_4/ // (1427210 + 227()|) ~*day dry do < 1.
1/2<4<2 T |

|z14+z2v (o

<prt
For n > 0 we integrate by parts in a to get
Kpi(z) = i/hg(s/t) /aagn(aj,a)eis(“‘”'”””(a))dads
= i/tAg(t(:Ula + z37()))Oagn(z, a)da
where

@y (7, ) Br(a)(v(a) — ay'(a))
z1 + z27' () '

gn(xa a) =

Note that if ®,,(x,a) # 0 then

(L+ Jzl2 " Il (@) + 1]
Dagn(z, )| < '
| o gn (T Oé)| ~ |2171 +$271(a)|

14



Therefore

sup |Kon, ()]
te[1,2]
1 2—n|T " 711 2_4
(3.24) < / (Ut a2 D" (0] £ 17] : i
|71 + 227/ ()] (1+ 2 210 + z27())
ael*:
|z14+z27 ()]
~2m 1|7t

and

[ s |Koi@lds

A t€[1,2]

k 1 1 1 2
< 1+2™1 I~ r—————————dud
S [ ezrppr@iny [ el ggdud
lug|r2™ 7]~
|u|~2F
325 Smin2t 200 [ (@) 4 2 @)+ 1] da
I*

In the evaluation of the integral we used that |u| ~ 2% and |uz| ~ 2"|I|~! implies that |u;| ~ 2*
due to our assumption on 2"|I|7! < 2. By assumption (3.12) we have [,. |I||y"(@)|da < 27¢ and
therefore

/ sup |Kp ¢ (z)|de < min{2F—¢ 23Ry (9k—t=n 4 1)
Ag t€[1,2]

again since K, ; vanishes on Ay, if n > k this yields

(3.26) / sup | Kng(o)|de < k2-1F=0,
— ) Ay te[1/2,2]

The estimate for I?t is similar to the estimate for the term K} » in the proof of Lemma 3.1. Since
in the support of 1 — n(---) we have |z; + z27'(a)| & |z| we obtain that

/ sup | Kq(z)|dz
A

o 1/2<1<2
2—€
+ 2=z + oy ()])

(3.27) s [ @t p@p 15 drda < C.

The estimate (3.16) for F~'[m] follows immediately from (3.20), (3.26), (3.27) and the L'
boundedness of Hy. Since m is supported in Q and ¢ € [1/2,2] we can write 9¢, F ' [m(t™!)] =
Y * F-Hm(t~1)] for a suitable Schwartz function ¢; depending only on Q and j. The estimate
(3.16) for VF~'[m] is then immediate.

We now turn to the (standard) estimation of the Calderén-Zygmund integral (3.17). Let K; =
F~'m(t'-)]. The integral in (3.17) can be decomposed as }, ., & where

Eo= [ sup Koo~ ) - Kau(a)|do
e[ >2]y| 1<t<2

= / sup |Ky(z —2%y) — Ky(z)| d.
|z|>2k+1|y| 1<t<2
15



If 2%|y| > 1 then this integral is estimated by

/ sup |K;(z)] de S min{(1+0), 2°°(2"|y|) " log(2 + 2°|y])};
|

z|>2k+1 |y 1<t<2

this follows from (3.16) and (3.20). Therefore } yu|, >, €k
estimate on the gradient in (3.16) and obtain

< (1 +£)2. For 2*|y| < 1 we use the

~

1
E S/ sup ‘/ (2Fy, VYK (x — s2¥y)ds| dz < 2%|y|(1 + ¢)
0

1<t<2

so that 3 oi, <1 €& $1+ £ Thus (3.17) is proved.

Finally, an examination of the above arguments leading to (3.16) also yields the assertion for
the maximal operator in (3.18). First let |z| > 10¢; then we use (3.20), an estimate which does not
depend on I. Then, from the shape of the kernels H;, we obtain that

(3.28) sup sup |(X{|,|221oe}]—'*1[mgl,gml]) * f(ar)| S Mi(He* f)(x)
B1,82€B I€T,

where Hy is an kernel with L' norm O(27°) and M; is the Hardy-Littlewood maximal function in
the z; variable.

We dominate (K, ¢x.a4,)* f by a Besicovich type maximal function; here x4, is of course the
characteristic function of the annulus Ay. A straightforward analysis of (3.24) yields that for k < 10¢
(and hence 27|I|~! < 210¢)

(3.29)

|(Kinxa) = F@)] S (1+0)(

7 [ [0+ 2D @)+ 17 mind1, 209}y o fw)ido)
where My, is the maximal operator associated to all rectangles centered at the origin which have
eccentricity less then 2!°¢ and one side parallel to (a,~(a)). To verify this one notes that if |z;a +
z2y(a)| < |z + 227/ (a)| in (3.24) then |z1 + 227/ ()| = |z

Let 9, denote the maximal function associated to all rectangles centered at the origin, with
eccentricity < 2!°¢. Then it follows from (3.29) that

|(Ktnxan) * f(2)] S (1+OM.f(x).

A similar (easier) pointwise estimate holds for K. By Cérdoba’s result [4] the L2 bound for M, is
O(1 + ¢). Summing in n < 10¢ and k < 10¢ we can dominate x{.|<zw0ey|F~[m]|(z) by C(1 + £)?
times My (M, f)(z) and this together with (3.28) implies (3.18). O

L! estimates and decompositions of the multiplier. We shall now prove the statements of
Theorem 1.1 and 1.2 for p = 1. We first recall the standard dyadic decomposition of the Riesz
multiplier in terms of 1 — p.

Let ¢p € C§°(R) so that ¢o(t) = 1 for |t| < 1/2 and ¢o(t) = 0 for |t| > 3/4. Define ¢o(t) =
B0(2°t) — ¢o(2¢71¢) for £ > 1 and

mae(€) = ¢e(1 = p(©)(1 - p(€)2
for £ > 0. By Lemma 3.1 || F ' [my ]|y = O(2%) for £ > 0 and also

/ sup |-7:_1[m)\,z](tw)| < 2£_§
2k
(3.30) |z|~v2k 1/2<¢<2
/ sup  |VF Hmy g (tz)|dz < 2°
1/2<t<2
16



This estimate is used for small /; the statement about the gradient follows since m, ) has compact
support.

To improve the estimate for large £, say £ > 10M, we need to introduce a further decomposition,
refining the one in §2. It suffices to consider xym, x where x is supported in the half strip &,, as
defined in (2.2); without loss of generality u = (0, 1).

We fix § = 2~ and refine the partition A, (27¢) = {ao,a1,...,a0} (for notational simplicity we
do not indicate the dependence of this decomposition on £). Define

ajr1 — 27" a1 — aj) ifv=1,....2M +/(—1

aj0 = 4 3(aj01 + a;) if v=0
a; + 271" (a1 — aj) ifv=—2M—(+1,...,—1;
also set ajonie = @jy1, aj,—2m—¢ = a;. Let If,,, = lajp,qjpy1], v = =2M —£,...,2M + ¢ — 1.

Note that two consecutive intervals I]{V have comparable length. Moreover if I is the union of
such two consecutive intervals, then I satisfies the hypothesis (3.12) of Proposition 3.2. In order
to see this simply note that (s — t)(vR(s) — 74 (t)) < 27 for t < s; t,5 € (aj,a;41); moreover if [
denotes the union of two subsequent closed subintervals I ﬁ,,, both of them contained in (a;,a;j4+1)
then the associated interval I* (blown up by a factor of 4/3) is contained in (aj,a;j4+1). In the
remaining case, if one of the two subsequent intervals contains a; or a;yi; then the length of I* is
< 272M=t42)q. | —a;| and therefore in this case the quantity (s —t)(v5(s) =7} (t)) can be estimated
by 2||71||002—2M+2—l < 92—t

It is now straightforward to construct C'*° functions ﬁf’y so that each ﬁf’y is supported in the
union of two consecutive intervals containing a;,, so that

SBLwP=1,  j<1
7
and ]
(&Y gt 0| < ol n=1.23.4

Define S;{l, by Sf,uf(f) = f,u(f) (€) and KJ{V by

—

K¢ () = B],()b(&)me(£);

then F~'[bmey] * f = 32, , Kj, * S;,f. The LP operator norm of Sf, is uniformly bounded in
£, j,v. After renormalization we may apply Proposition 3.2 to get that

(3.31) 1K S (140277

~

For fixed ¢ the sum in v contains less than 2*M+*¢ terms; hence

[F~ xmenl|, S (1+02Qu(279)272
(3.32) SA+0PNE2 Q)2

by Lemma 2.3. Now the asserted L' bound for A > kq follows from
(3.33) N(27¢, Q) < 0.2t rate)

by definition of kq.
17



We now define the maximal operator My by

Mef(w) = sup |F e (tH)] = f(@)].

Standard estimates (see [21, ch. VII], [5] ) show that M, is bounded on L? with norm O(2=(1+/)).
Moreover standard arguments and (3.30) yield

/l sup [ F - mae(t 1)@ —y) = F ot ))(@)|de S 25

z[>2[y| t>0

furthermore for ¢ > 10M we deduce

/| sup |}'71[m>\,g(t71-)](:n —y) — fﬁl[mxg(t*l-)](mﬂdw <(1+ [)4N(2*l, Q)Q*D‘.

z|>2y| £>0

from (3.17) and Lemma 2.3. This means that M, is of weak type (1,1) and more precisely for a > 0

o Mo @) > a}| S L+ N, o2 I

(07

cf- [25], [20]. Using the familiar result by Stein and N. Weiss [22] on summlng functions in weak
L' we obtain the weak type (1, 1) inequality for maximal function sup,q |F'[(1 — p/t)}] * f]| for
A > Kq. Since pointwise convergence holds for Schwartz functions the assertion of Theorem 1.2 for
general L' functions follows. O

LP estimates. The LP estimates

IF " xmepflllp S 2721+ O IN©Q, 279 £l

for 1 < p < 4/3 are obtained by interpolation from the cases p = 1 (see (3.32) above) and p = 4/3.
The L*/3 estimate follows by duality from the L* estimate

(3.34) 17 xmenfllls S 272+ 01 flls

for suitable ¢. We have made no attempt to optimize the power ¢ here; ¢ = 6 certainly works but is
far from being optimal.

In order to obtain (3.34) it suffices to consider

(3.35) M(€) = x(Omea(©) D 8L, (&)

Jij€a

where a is a subset of 2,(27¢,r), 1 <27 < 2M+£ 4, = (0,1) so that the property (2.13) is satisfied
with B = 2M | and the function j — v/(j) takes integer values in [—2M — £+ 1,2M + £ — 1].

We then have to show that m is a Fourier multiplier on L* with norm < 27 (1 4 ¢)3. Since m
is a sum of no more than O((1 + ¢£)?) such multipliers the assertion follows.

Let G; be as in (2.14), with B = 2M. If §, is parametrized by (,7(t)) in &, then 1 — p(£) >
27 M|¢, — y(&1)] and therefore the j*" term in the sum (3.35) is supported in G;. Using Lemma 2.4
we may use the familiar argument from [6], [4] to obtain the estimate

1 Al s (2 1 * Stain 7).

ajen
18



We continue arguing as in Cérdoba [4]. By (3.31) and the bound O((1 + ¢)*) for the L? norm of
the maximal operator M, in (3.18) we obtain for nonnegative w € L?

| 3 1L S S P la)de

a;€a

<2201 / ST ISL 0 () PP ()

ajen

s o3 |Sfiu<j>f|2)” I ol
aj€a

By Rubio de Francia’s theorem on square functions for an arbitrary collection of intervals [16] (or a
more elementary version of it where all intervals have comparable length) we know that

[(3 1850 2) ", 2 10
aj€a

Putting these estimates together we deduce that
17 A, S 2720+ 021l

which implies (3.34) and finishes the proof of the L? boundedness of Ry. O

Convergence in LP. Given the uniform boundedness of the operators R we sketch the routine
proof of the convergence result as stated in Theorem 1.1. Denote by Sy the space of Schwartz-
functions with compactly supported Fourier transform; Sy is dense in LP if 1 < p < oo and dense in
CP. Suppose that g € Sp so that g is supported where |¢| < R. Let ® € C§°(R) so that ®(s) = 1 if
|s| < 1/2, ®(s) =0if |s| > 3/4. Define Sy by

Snaf(€) = ®(p(&) /D)1 — p(€) /1)) F(6);

then Sy 9 = Rag for t > 2R. By Lemma 3.1 the convolution kernel of Sy is an L' kernel, for
all A € R, and the family {S),} is a standard approximation of the identity. Therefore Sy.9 — ¢
uniformly, and in LP, 1 < p < oo. For general f € L? (or Cy) the convergence result follows by
approximating f by functions in Sp and the uniform boundedness of the operators Ry . O

4. Examples

Given two parameters n € (0 o), a € (0,1) we consider a convex domain 2 = Q(n, @) with C'1-*
boundary so that kg = max{-%- g1’ 3 1+n)} for which Theorem 1.1 is sharp. We may think of (2 as a
polygonal region with infinitely many vertices; however near the vertices the boundary is regularized
using primitives of suitable Lebesgue functions of class C“.

The set Q is contained in {z : 4 < |z] < 8} and symmetric with respect to the reflections
(x1,22) V= (x1,—2x2) and (x1,22) — (—z1,22). The portion of the boundary which lies in {z :
|z1| > 1,|z2| > 1} is given by segments of the lines 3 = £8 + x;. It is then enough to parametrize
the boundary in {z : |z1| < 4,22 < 0} by an even convex function v with v(0) = —15/2, so that
y(#t) =—-8+tfor 1<t <4

Fix n > 0 and define for & > 0

(41) Ly = 1 + [610g2(1+k)2k77]
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where [z] denotes the largest integer < z.

We define a doubly indexed sequence z;;, by

- J
=9k ___J .
$]7k 2k+1ﬂk ’
here k is a nonnegative integer and j = 0,...,ur — 1. We also define

Tk = Toppr (=27571)

Note that Tj k+1 < Tk if jl < pg, 3 >0, and Tj+1,k < Tjk if 0 <j < pg-

Let n 2 +1
Tjk T Tjt+1k - J —k—1, — .
Uj,k:%ZQ k_T2 b ll’/kla J=0, =1
ke 1. .9 _
Opg ke = 00, k+1 = 2 k 1_52 k 2/~‘ki1a

2 2
Then o, is the slope of the secant connecting the points (41 %, m“;”“) and (z;, %Tk)’ and it is

of course also the midpoint of the interval [z;t1.%,%j%]. On a substantial portion of this interval
containing the midpoint we shall define 7 so that its graph coincides with the secant, and near the
endpoints we shall replace it by a more regular C*® function. We also set

O—1,k+1 = Opp—1,k;
moreover .
Tik = Ojk — Ojrk, J=0,..., 0 — 1.
T-1,k+1 = Opp—1,k — 00,k+1-

Note that for 0 < j < pp — 1 the expression 7 is actually independent of j, namely equal to
2—14:—1“];1-

We further split the interval [xj41,5,2;,;] using points z11x < djr < 0jr < bjr < xjr where

bjk =ik —2 " Put 0 < <y -1
dig =xjp —3-27F 3t 0<j <y —1

and

1 4 —1

_ —k-2, — —k—4,—1 —k—
Ape—1,k = d—1k41 = Tpp—1,5 + 2 Py — 2 M1 = Opp—1,k — 2 M-

One may then verify that for 0 < j < pp — 1
bjk + djk bjk + dj—1. Tj-1.k

(42) T =0j.k and f =0j.k + D)

Let g, be the Lebesgue function on [0, 1] associated to the symmetrical perfect sets of Cantor
type, with constant ratio of dissection = 2~'/® (see Zygmund [26, ch.V, 3]; the dissections are of
type [2;0,1 — 271/ 2-1/2] in the notation of [26]). Note that g, is a monotone function on [0, 1]
with

90(0) =0, ga(1) =1
4.3 1
(4:3) /0 go(t)dt = %;

the integral can be evaluated since go(1/2+s) —1/2=1/2 — go(1/2 —s) for 0 < s < 1/2.
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Note that bygp = 15/16. On the interval [0,15/16] we define v by

d? .
L5 + 0kt — djg) if djp <t <Dbji

_§ +
(4.4) () = NS . i ‘
— 2+ 5ot = bik) F ik fy, GG )ds i b S <djag
On [15/16, 4] we define
15 225 7 15 1 32t—30 ie 15 31
7(t)—{_7+m+§(t_ﬁ)+ﬁ° gals)ds if 13 <t < 55

4.5 =
(45) 8+t if 35 <t <4

One verifies that for ¢ < 15/16 the function v is C* with v(bj ) = _15/2"‘[’?,1@/27 ' (bj k) = ks
’)/’(dj7k_1) = Tj—1,k + Ojk = 0j—1k and in view of (4.2), (4.3) also 'Y(dj—Lk:) = —15/2 + d?—Lk:/Q'
Moreover, since bg,o = 15/16 and 09, = 7/8 it is easily checked that (4.4) and (4.5) together define
a C* function on [0, 4].

The function g, belongs to C*([0,1]) (see [26, p.197]); from this it easily follows that actually
v € CH in [0,4]; in fact

(46) Y (0) =7 (0] {

if ty,ty & 27K
We now estimate the covering numbers N((2,0), for small §. Let m be so that

7 Fu )b — bl if [t — | < 27Fp
|t1 — o if [t —ta] > 27Fp !

(4.7) 9=m(l+n) g=log*(1+m)  51/2.
then we can cover the graph over [0,27 ] with
~ elog” (1+m)gmn < C.6 = *
adjacent rectangles with sidelengths (6'/2,6); here & > 0. Moreover there are

(4.8) R~ Z elog”(1+k) gkn < glog? (1+m) gmn
k<m

points z; in [27™,1]. Therefore if Q denotes the polygon with symmetry about the z; and x,

axes interpolating the points (a:j,k,a:ik/Q) then N () N =t+m . Similarly one can obtain the

appropriate lower bound to see that kg = 2(+H7) Note that the drawback of working with Q is
that the boundary is merely Lipschitz. To remedy this situation we interpolated using the Cantor-
Lebesgue functions. Since the covering numbers over the interval [27™, 1] may now increase we shall

have to impose the restriction ;35 < 2(++n)

Fix an interval [bjx,dj_1 %] and n > 0. Then there are =~ 2" subintervals I, of length
(271 @)n2=k=1 =1 5o that (v (t1) — 7' (k) (b1 — t2)] < 277(H3) (27F=1 =12 for ¢y, by € I, and s0
that ' is constant on the complimentary intervals; here we used (4.6). Given small ¢ find n so that
2 (1+2) (2751 =1)2 x §; then 27 & (22u26) " =+1. Therefore the sum in (4.8) is now replaced by

~aT e > _n
Co~ =+t if 599 > 575,
2 2 a o .
E : elog (1+k)2k77(22k(1+n)e210g (1+k)5)*a—+1 <{ C.§ a1 °® if ;55 = 2}277 '

k<m N __ . o n
C.6 2tz if a1 < 3327

This implies in particular that

n a ¥
2420 a+1"’
in fact a more careful examination of the previous argument would show that (4.9) holds with
equality.

(4.9) ko < max{
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Lower bounds. Let ¢ € C*°(R) supported in (1/2,2) so that ¢(r) > 1 for |r| < 210, Let T} be
defined by

(4.10) Tof(€) = (2°(1 — p(€))) F(€)

where p is the Minkowski functional associated to the set Q = Q(n, ) defined above.

Lemma 4.1. The following holds for large positive k. If £ = £(k) is chosen so that
(4.11) 27Uk < (2k )2 < 27 URHL

then there is ¢ > 0 (independent of k) so that

$-3,1-2
W TekyllLr—sre > cpf k' =%
for p > 1.

Proof. Let x € C§°(R) so that x(s) = 0 for |s| > 2 and x(s) = 1 for |s|] < 1. Then |x(7)| <
Co(1 + |7])=2 and Re(X()) > 1/2 for |7| < 2—R with suitable R > 10. Fix a small ¢ > 0 and a
large integer L, and assume that ¢(k) > 100L.

We test Ty(x) on the function f; defined by

Ny,
Fl© = x@* &+ 2) S x@ =R E — oru)

where Ny = [u;/10L]. fi is bounded and supported on a rectangle of sidelengths ¢o2~* and 272,
One may think of fj, as a modified bump function; however we localize to tiny strips containing the
lines &1 = 0 1) where j =0 mod L.

Clearly || fx|]2 < 27%#/2) by Plancherel’s theorem. Moreover

9—2k 9—-R—t(k)/2

ivL2~k— 1
SECURS (1 + 272k [2y[)2 (1 + 2~ B0 /2|, ])2 ‘Z

and the geometric sum is dominated by min{Nj, |e’*2"" "# #1 — 1|71}, Since 27F=1 ! & 270(k)/2
and log Ny, & k a straightforward computation shows that ||fx||1 < k. By interpolation

(4.12) I fell, S K-1H2/P2=3k/0" < p<a

Since o is the midpoint of [2j41,k,2; ] only the definition of v in [d; k, bj ] Will be relevant
in computing Ty fr- We write out the Fourier integral for Ty, fr and introduce homogeneous

2
coordinates & = s(t,v(t)). Set xui(s) = X(2R+L2k)(s — orwk))). Notice y(t) = =32 + % +
Orvk(t — dryy) if st € suppx,r and that ty/(t) — y(t) = gvx where the constant g, satisfies
7<gur <8. Then

Ny
(2m)2 Ty fi(x) = / / RO (1 = 5)) 3 g i (st)ei* @27 O) sy
v=1

Ny
(4.13) = guiFor(z)
v=1
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where

ek) (1 — 2
Fy7k($) — / ¢(2 il S))eist(dL;’k —UL,,,dey,k—§)ds/X(2R+f(k)/2(u_O_LV7k))ei(wlu-i-xQULu,ku)du_
In the first integral we expand 1/s =1+ (1 — s)/s and obtain that

d2
Fu(z) = Tpp(@) Ay (@1 + 220L0k) (Bui (22 = onvedivi — 2)a2) + Ey(22))

where
Ay(r) =27 B-sg(—2-R-31
(4.14) o(7) AX( )
B,u(r) = 270 (2~ W)7)
and
Tk ()] =1
(4.15)

|Bu(x2)| < 2/|glli27®).

We derive an estimate for z in
Syp = {z: 20+ < gy | < 26OF3 gy 4oy, | < 20R)/2),

From (4.14-15) we see that

(4.16) |Fy ()| > %2—34<k>/2, if 2 € Sy

If x € Syr i for v #v' then |21 + oLy 22| > |22(0Luk — OLu k)| — 0(2“’“)/2). Therefore, if L is
sufficiently large,

(4.17) |Fyp(z)| S 273 WLy — ') 72, ifze Sy
and we see from (4.16-17)
(4.18) 1 Teguy fillp > 27> 0PV NP > @) =07 gy

Comparing (4.12) and (4.18) we obtain the asserted lower bound for the LP? operator norm of
Tyry- O

Proof of Theorem 1.3. For given k € (0,1/2) choose n = 2 and a = £, and define
Q. = Q(n,a) as above. Note that x = ﬁ = 245 so that by formula (4.9) and Theorem 1.1 we
know that R is bounded on L? if 1 < p < 4/3 and A > x(—3 +4/p).

For the converse fix A > 0 and assume that Ry is bounded on LP. Let ¢ be as in (4.10). For
m(s) = ¢(2°(1 — s)) we use the familiar formula

_ (_1){)‘]+1 /OO A, (A1) Py
(4.19) m(p) = oD/, s'm (s)(1 S)+ds
where the derivative is defined by m(r) = (=1)M(=ir)Ym(r); see [23] for the proof of (4.19) for
fractional A.
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A scaling argument shows that for A+1 >0

[ee]
|l it s)ds < 2
0
and the assumed boundedness of R and dilation invariance implies that

Ty llLr—rr S 2N,

By Lemma 4.1 it follows that s SH/pp1-2/p < (2Fpug)?* for large positive k. Taking into account
the definition of uy and n, it follows that

(4.20) kP elp 3TN 08% (k) < g hr(3-3))

Note that (4p~t —3—2X) = (4p~! —3)(1—2k) in the critical case A = k(—3+4/p). Since we assume
p < 4/3 and k < 1/2 the necessity of the condition A > k(—3 +4/p) follows from (4.20). O
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