
RIESZ MEANS ASSOCIATED WITH CONVEX DOMAINS IN THE PLANEAndreas Seeger Sarah Ziesler1.Introdu
tionLet 
 be a bounded open 
onvex set R2 whi
h 
ontains the origin. Let � be the asso
iatedMinkowski fun
tional de�ned by �(�) = inf �t > 0 : t�1� 2 
g:We shall investigate the Riesz means of the inverse Fourier integral asso
iated with 
(1.1) R�;tf(x) = 1(2�)2 Z�(�)�t �1� �(�)t �� bf(�)eih�;xid�;here our de�nition of the Fourier transform is bf(�) = R f(y)e�ihy;�idy. For t = 1 we also setR� = R�;1 and refer to R� as the Bo
hner-Riesz operator asso
iated with 
. Note that for � = 0the Riesz means R0;t are just the partial sum operators asso
iated with the sets t
, t > 0, while for� = 1 one re
overs the F�ejer means, namely the averages R1;t = t�1 R t0 R0;sds. The obje
tive is toprove that R�;tf 
onverges to f in Lp(R2 ), for suitable 1 � p <1; for p =1 one has to repla
e L1by the spa
e C0(R2 ) of 
ontinuous fun
tions with limjxj!1 jf(x)j = 0. The main step is to establishthe Lp boundedness of R� (and, equivalently, of R�;t).If 
 is the unit dis
 in R2 expli
it 
al
ulations show that the 
onvolution kernel of R� belongs toLp(R2 ) if and only if � > 2=p� 3=2. In parti
ular R� is bounded on Lp for 1 � p �1 if � > 1=2 (aresult whi
h goes ba
k to Bo
hner), moreoverR� is unbounded if p =2 (p�; p0�) where p� = 4=(3 + 2�)and p0� = p�=(p��1) is the 
onjugate exponent. Fe�erman [6℄ showed that the partial sum operatorR0 is bounded on Lp if and only if p = 2. The best possible result for all � 2 (0; 1=2) was provedby Carleson and Sj�olin [3℄ who obtained Lp boundedness for p� < p < p0� (see also Fe�erman [6℄,C�ordoba [4℄ for di�erent proofs).Various generalizations of these results have been 
onsidered in the literature; in parti
ular Sj�olin[19℄ proved the analogous Lp inequalities for Bo
hner-Riesz multipliers asso
iated to an arbitrary
ompa
t C1 
urve in the plane.In this paper we 
onsider the 
ase of Riesz means asso
iated with 
onvex domains, with no extrasmoothness assumption on the boundary 
. Only the F�ejer means have been 
onsidered in thisgenerality; see [12℄ where Lp boundedness for 1 � p � 1 is proved. We shall in fa
t show that allthe above mentioned suÆ
ient results for the unit dis
 remain true in our more general setting; theseresults are ne
essary and suÆ
ient for 
onvex sets with smooth boundary. Moreover we shall showhow these results 
an be improved for some 
lasses of 
onvex domains with nonsmooth boundary.In order to formulate this improvement we need to introdu
e a version of upper Minkowskidimension of the boundary �
 with respe
t to a suitable families of 
aps or \balls". The use ofThe �rst author was supported in part by a grant from the National S
ien
e Foundation.The se
ond author was supported in part by a grant from the Fa
ulty of Arts, University College Dublin.Typeset by AMS-TEX1



these families is motivated by the estimates of Fourier transforms of measures 
arried by 
onvexsurfa
es, see Bruna, Nagel and Wainger [2℄.Let P 2 �
 and let ` be a line through P . Let H0(`) be the 
losed half-plane with boundary `whi
h 
ontains the origin. We say that ` is a supporting line for 
 at P if 
 � H0(`) and denote byT (
; P ) the set of supporting lines for 
 at P . Note that T (
; P ) 
onsists pre
isely of the tangentline through P if 
 has a C1 boundary.Let P 2 �
. For any supporting line ` through P and Æ > 0 we de�ne(1.2) B(P; `; Æ) = fY 2 �
 : dist(Y; `) < Æg:Let BÆ = fB(P; `; Æ) : P 2 �
; ` 2 T (
; P )g and let N(
; Æ) be the minimal number of balls B 2 BÆneeded to 
over �
. Let(1.3) �
 = lim supÆ!0 logN(
; Æ)log Æ�1 ;this is our version of upper Minkowski dimension. It is not hard to see (
f. Lemma 2.3 below) that0 � �
 � 1=2.In what follows 
 will always be an open 
onvex set in R2 
ontaining the origin. Our main resultis:Theorem 1.1. Suppose that 1 � p � 1, � > 0 and � > �
(4j1=p�1=2j�1). Then R�;t is boundedon Lp(R2 ).Suppose f 2 Lp(R2 ) if p <1 and f 2 C0(R2 ) if p =1. Thenlimt!1 kR�;tf � fkp = 0:The L1 result of Theorem 1.1 has the following 
ounterpart for pointwise 
onvergen
e whi
hfollows from the weak type (1,1) bound for the appropriate maximal operator.Theorem 1.2. Suppose that f 2 L1(R2 ), � > �
. Then limt!1R�;tf(x) = f(x) almost every-where.It is well known that Theorem 1.1 is sharp if the boundary of 
 is smooth; then R�;t is boundedon Lp if and only if � > maxf0; 2j1=p� 1=2j � 1=2g; in fa
t the ne
essity of this 
ondition followsfrom Theorem 3 in [11℄ if 
 has merely C2 boundary. This is the minimal smoothness assumptionto ensure �
 = 1=2 sin
e for every � 2 (0; 1) there exist 
onvex domains 
 with C1;� boundary and�
 = �=(� + 1) < 1=2. In x4 we 
onstru
t domains with this property for whi
h Theorem 1.1 issharp:Theorem 1.3. Let 0 < � < 1=2. Then there exists a 
onvex domain 
� with C1; �1�� boundarysatisfying �
 = � so that for 1 � p < 4=3 the operators R�;t asso
iated to 
 are bounded on Lp(R2 )if and only if � > �(4=p� 3).Remarks. 1. If 
 has a C1 boundary then Theorem 1.1 is a spe
ial 
ase of Sj�olin's theorem [19℄(the previously proved Carleson-Sj�olin theorem [3℄ 
overed the 
ase of domains with nonvanishing
urvature; see also [9℄ for the 
ase of �nite type 
urves). If 
 has C2 boundary then there is apoint on �
 where the 
urvature does not vanish and working near this point one easily 
he
ks that�
 = 1=2 in this 
ase. We remark that Sj�olin's proof relies on the assumption 
 2 C1 sin
e it usesapproximation to redu
e the general 
ase of smooth fun
tions to the 
ase of polynomials. It wouldbe interesting to investigate whether the smoothness assumption is needed in the non
onvex 
ase.2



2. Podkorytov [12℄ showed L1 
onvergen
e of the F�ejer means (for � = 1) asso
iated to arbitrary
onvex domains; this 
an be improved to the 
ondition � > 1=2 (sin
e �
 � 1=2 in Theorem 1.1). Adi�erent extreme 
ase o

urs when �
 = 0, in parti
ular if 
 is a 
onvex polygon. This parti
ular
ase was 
onsidered before; Podkorytov [13℄ proved L1 
onvergen
e for Riesz means R�;t asso
iatedto arbitrary (not ne
essarily 
onvex) polyhedra in Rn , for every � > 0. The 
orresponding result forpointwise 
onvergen
e was worked out by one of the authors in [17℄ using the method in [13℄ and aresult by E. Stein and N. Weiss [22℄ on adding weak type fun
tions; 
f. also the more re
ent paper[1℄. 3. Intermediate rates for Lebesgue 
onstants of trigonometri
 series, for 
ertain polygonal do-mains in the plane with in�nitely many verti
es, were found by Podkorytov [14℄, and by A. and V.Yudin [24℄; their examples are related to the example dis
ussed in x4.4. Let 1 < p0 < 4=3. It would be interesting to �nd 
onvex domains for whi
h R� is boundedin Lp for all � > 0 if and only if p0 < p < p00.5. Our method also applies to multipliers of the form �(�)(�2� 
(�1))�+ if 
 is a 
onvex fun
tionor �(�)dist(�;�)� if � is a 
onvex 
urve; here � 2 C10 . Moreover the subordination formula (4.19)below allows the extension to more general multipliers of the form m Æ �.Notation: The Fourier transform of f is denoted by bf , the inverse Fourier transform of f isdenoted by F�1[f ℄. By C0 we denote the spa
e of 
ontinuous fun
tions with limjxj!1 jf(x)j = 0.By C10 we denote the spa
e of smooth fun
tions with 
ompa
t support. By C1;� we denote a spa
eof di�erentiable fun
tions whose derivatives are H�older 
ontinuous with exponent �. Given twoquantities A and B we write A . B if there is a positive 
onstant C, su
h that A � CB. Su
h
onstants may depend on the number M in (2.1) below. We write A � B if A . B and A & B.A
knowledgement: The se
ond author would like to thank both Carlos Kenig and Tony Carberyfor valuable 
onversations relating to this work.2. Convex sets and plane geometryLet 
 be an open 
onvex domain in R2 
ontaining the origin. Sin
e the statements of Theorems1.1 and 1.2 are invariant under dilations and sin
e � is homogeneous of degree 1 it is no loss ofgenerality to assume that the 
losed ball of radius 4 
entered at the origin is 
ontained in 
. Thenthere is an integer M � 3 so that(2.1) f� : j�j � 4g � 
 � 
 � f� : j�j < 2Mg;this is hen
eforth assumed.Let u?, u be orthonormal unit ve
tors, so that det(u?; u) = 1 and de�ne the half strip(2.2) Su = f� : jh�; u?ij � 2; h�; ui � 0g:We now give some properties of the boundary �
 relying on elementary fa
ts on 
onvex fun
tions(see e.g. [10, x1.1℄).Lemma 2.1. �
 \Su 
an be parametrized by(2.3) t 7! tu? + 
(t)u; �2 � t � 2where (i)(2.4) �2M < 
(t) < �2; �2 � t � 2:3



(ii) 
 is a 
onvex fun
tion on [�2; 2℄, so that the left and right derivatives 
0L and 
0R existeverywhere in (�2; 2) and(2.5) �2M�1 � 
0L(t) � 
0R(t) � 2M�1for t 2 [�2; 2℄. The fun
tions 
0L and 
0R are in
reasing fun
tions; 
0L is left 
ontinuous and 
0R isright 
ontinuous in [�2; 2℄.(iii) Let ` be a supporting line through � 2 �
 and let n be an outward normal ve
tor (e.g.normal to `). Then(2.6) h�; ni � 2�M j�j:Proof. By assumption (2.1) the line segment fsu? : jsj � 4g is 
ontained in 
. Now �x s withjsj � 2 and 
onsider the ray fsu? � Ru : R > 0g. For any point P 2 
 whi
h is on this ray theline segment 
onne
ting P to su? also belongs to 
. Hen
e there is exa
tly one point on this ray,whi
h is also a boundary point. Therefore there is a fun
tion t 7! 
(t) on [�2; 2℄ so that �
 \ Su
an be parametrized by (2.3) and (2.4) is satis�ed. Then 
 is a 
onvex fun
tion; for the existen
eand 
ontinuity properties of left and right derivatives see [10, x1.1℄.In order to obtain the bounds on the derivatives �x t0 2 [�2; 2℄. One notes that the interse
tionof 
 and the ray through t0u?+
(t0)u starting at 4u? is pre
isely the line segment 
onne
ting thosetwo points; an analogous statement holds with 4u? repla
ed by �4u?. This implies for t; t0 2 [�2; 2℄that 
(t0)4 + t0 (t� t0) � 
(t)� 
(t0) � �
(t0)4� t0 (t� t0); t0 � t;
(t0)4� t0 (t0 � t) � 
(t)� 
(t0) � �
(t0)4 + t0 (t0 � t); t � t0;and (2.5) follows from (2.4).In order to see (2.6) we 
hoose u = �=j�j and parametrize �
 near � by (2.3) (the fun
tion 
depends of 
ourse on u). The ve
tor n is given byn = 1p1 + �2 (�u? � u) where 
0L(0) � � � 
0R(0):Sin
e h�; ni = j�j(1 + �2)�1=2 the assertion (2.6) is an immediate 
onsequen
e. �It will be useful to approximate 
onvex domains by smooth ones.Lemma 2.2. Suppose that 
 satis�es (2.1). There is a sequen
e of 
onvex domains 
n 
ontainingthe origin, with Minkowski-fun
tionals �n(�) = infft : �=t 2 
ng, so that the following holds:(i) 
n � 
n+1 � 
 and [n
n = 
.(ii) �n(�) � �n+1(�) � �(�) and �n(�) � �(�)�(�) � 2�n�1;in parti
ular limn!1 �n(�) = �(�), with uniform 
onvergen
e on 
ompa
t sets.(iii) 
n has C1 boundary. 4



(iv) If Æ � 2�n+2 then(2.7) N(
n; 2Æ) . N(
; Æ)where N(
; Æ) denotes the 
overing number for the boundary as de�ned in the introdu
tion.Proof. We �rst approximate the boundary of (1 � 4�n)
 = f� : �(�) � 1 � 4�ng by a 
onvexpolygon. Let �� = 2��4�n�M and let u� = (
os �� ; sin ��), u�? = (� sin �� ; 
os ��). Let P� = �R�u�where R� is su
h that �(P�) = 1�4�n. Let e
n be the polygon with verti
es P� , � = 0; : : : ; 4n+M�1.We wish to smooth out the boundary near the verti
es and therefore modify this boundary only ona small part in the narrow half stripsS� = f� : jh�; u�?ij � 16�n�M ; h�; u�i � 0g:De�ne ~
�(t) = �R� + 
+� t if t � 0 and ~
�(t) = �R� � 
�� t if t � 0 where the slopes 
�� are 
hosen sothat the portion of the boundary whi
h is in S� is parametrized by t 7! tu�?+~
�(t)u� , jtj � 16�n�M .Now let � 2 C10 (R) be an even nonnegative fun
tion supported in (�1=2; 1=2) so that R �(t)dt =1. We de�ne 
�(t) = Z 64n+M�(64n+Ms)~
�(t� s)ds:Sin
e � is even it is straightforward to 
he
k that 
�(t) = ~
�(t) when 32�n�M � jtj � 16�n�M .Repla
ing �
\S� parametrized by ~
� by the 
urve parametrized by 
� yields a 
onvex domain 
nwith the required properties. If 2�n+2 � Æ and fBjg denotes a 
over of 
 with "balls" of the form(1.2) then the balls with double height 
over the boundary of 
n. This yields (2.7). �A de
omposition of the boundary. Let Su be as in (2.2). We introdu
e a de
omposition of�
 \Su in order to use the geometri
 properties of �
 in terms of the 
overing numbers N(
; Æ);we assume that Æ � 2�100�M . Consider the parametrization of �
\Su by (2.3). We de�ne a �nitesequen
e of in
reasing numbers Au(Æ) = fa0; : : : ; aQgindu
tively as follows. Let a0 = �1. Suppose a0; : : : ; aj�1 are already de�ned. If(t� aj�1)(
0L(t)� 
0R(aj�1)) � Æ for all t 2 (aj�1; 1℄)then let aj = 1 if aj�1 � 1� 2�MÆ and aj = aj�1 + 2�MÆ if aj�1 > 1� 2�MÆ. Otherwise de�neaj = infft 2 (aj�1; 1℄ : (t� aj�1)(
0L(t)� 
0R(aj�1)) > Æg:Sin
e j
0Lj, j
0Rj are bounded by 2M�1 we see that jt�sjj
0L(t)�
0R(s)j < Æ if jt�sj < Æ2�M ; thereforethe �rst 
ase o

urs after a �nite number of steps. We obtain a sequen
e a0 < a1 < � � � < aQ withso that for j = 0; : : : ; Q� 1(2.8.1) (aj+1 � aj)(
0L(aj+1)� 
0R(aj)) � Æ;and for 0 � j < Q� 1(2.8.2) (t� aj)(
0L(t)� 
0R(aj)) � Æ; if t > aj+1:Condition (2.8.1) is satis�ed sin
e 
0L is left 
ontinuous.It will also be 
onvenient to de�ne(2.9) Au(Æ; r) = faj 2 Au(Æ) : 2�r � aj+1 � aj < 2�r+1g:where r 2 N so that 2�MÆ � 2�r � 1. Note that Au(Æ) = [rAu(Æ; r).The number Q in (2.8.1/2) is also denoted by Q(Æ) or Qu(Æ) if it be
omes ne
essary to indi
atethe dependen
e of Æ or u.The following Lemma relates the numbers Qu(Æ) to the 
overing numbers N(
; Æ).5



Lemma 2.3.There exist a positive 
onstant CM , so that the following statements hold.(i) Qu(Æ) � CMÆ�1=2.(ii) 0 � �
 � 1=2.(iii) Qu(Æ) � CMN(
; Æ) log(2 + Æ�1).(iv) For � = 1; : : : ; 22M let u� = (
os(2��2�2M ); sin(2��2�2M )). ThenC�1M N(
; Æ) �X� Qu� (Æ) � CMN(
; Æ) log(2 + Æ�1):Proof. For (i) apply the Cau
hy-S
hwarz inequality and (2.8) to obtainQ� 1 � Æ�1=2 Q�1Xj=1 (aj � aj�1)1=2(
0L(aj)� 
0R(aj�1))1=2� Æ�1=2�Q�1Xj=1 aj � aj�1�1=2�Q�1Xj=1 
0L(aj)� 
0R(aj�1)�1=2� 4 � 2M=2Æ�1=2:(ii) is an immediate 
onsequen
e of (i).The left inequality in (iv) follows easily from the de�nitions on
e one observes that for a slope� � 
0R(aj) we have
(aj+1)� 
(aj)� �(aj+1 � aj) = Z aj+1aj (
0(s)� �)ds� (
0L(aj+1)� 
0R(aj))(aj+1 � aj):(2.10)The other inequality in (iv) follows from (iii). For the proof of (iii) pi
k r0 (with 2r0 � 2MÆ�1)so that among the sets Au(Æ; r) the set Au(Æ; r0) has maximal 
ardinality Q0. Note thatQ0 � Qu(Æ)2(M + log(2 + Æ�1)) :We may assume that Q0 � 2M+100 (otherwise (iii) follows easily). We may split Au(Æ; r0) into notmore than 240+M families Amu (Æ; r0) with the property that for every 
hoi
e of di�erent aj ; ak 2Amu (Æ; r0) there are at least 220+M numbers ai 2 Au(Æ; r0) between aj and ak.In order to verify (iii) we have to show that(2.11) Q0 � 
MN(
; Æ):We now �x aj ; ak 2 Amu (Æ; r0), aj < ak. Let t0 2 [aj ; aj+1℄ and let ` be a supporting line for 
at P0 = t0u? + 
(t0)u. Pi
k any t1 2 [ak; ak+1℄ and let P1 = t1u? + 
(t1)u. Observe that (2.11)follows if one 
an show that the distan
e of P1 to ` is greater than Æ. This we now verify. If � is theslope of ` then � � 
0R(t0) and �u?�u is the normal to ` whi
h is outward with respe
t to 
. Thendist(P1; `) = 1p1 + �2 �
(t1)� 
(t0)� �(t1 � t0)�� 1p1 + �2 �
(t1)� 
(t0)� 
0R(t0)(t1 � t0)�(2.12) 6



By de�nition of Amu (Æ; r0) we may pi
k L � 2M+5 intervals [
i; di℄ with aj+1 < 
1, dL < ak,2�r � di � 
i � 2�r+2, (
0L(di)� 
0R(
i))(di � 
i) > Æ. We set d0 = aj+1, 
L+1 = ak. Then
(t1)� 
(t0)� 
0R(t0)(t1 � t0)= 
(t1)� 
(
L+1)� 
0R(t0)(t1 � 
L+1) + LXi=0 h
(
i+1)� 
(di)� 
0R(t0)(
i+1 � di)i+ LXi=1 h
(di)� 
(
i)� 
0R(t0)(di � 
i)i+ 
(d0)� 
(t0)� 
0R(t0)(d0 � t0)� LXi=2 h
(di)� 
(
i)� 
0R(t0)(di � 
i)i � LXi=2 h(
0L(di)� 
0R(
i))(di � 
i)i � (L� 1)Æand thus, sin
e L = 2M+5, dist(P1; `) � L� 1p1 + 22M Æ > Æ: �The following Lemma is 
on
erned with a disjointness property for algebrai
 sums of balls of theform (1.2). This will be used in the proof of the L4 estimate in x3, using an orthogonality argumentdue to Fe�erman [7℄.Lemma 2.4. Let B � 1 and Au(Æ; r) as in (2.9). Let a be a subset of Au(Æ; r) with the propertythat(2.13) aj 2 a; ak 2 a; aj < ak =) k � j > 210B:Let Ij = [aj � Æ2�M ; aj+1 + Æ2�M ℄ and(2.14) Gj = f� : h�; u?i 2 Ij ; jh�; ui � 
(h�; u?i)j � BÆgThen for any � 2 R2 there are at most two pairs (j; k) with aj ; ak 2 a so that � belongs to Gj +Gk.Proof. We may assume u? = (1; 0), u = (0; 1). Suppose without loss of generality that(2.15) � 2 (Gj +Gk) \ (Gm +Gn); j � k; m � n;we shall then show that j = m, k = n. Now � = (�1; �2) with(2.16) �1 = �j + �k = �m + �n; �i 2 Ii, i = j; k;m; n,and �2 = 
(�j) + 
(�k) + (tj + tk)Æ;(2.17) �2 = 
(�m) + 
(�n) + (tm + tn)Æ;(2.18)with jtij � B for i = j; k;m; n:Re
all that 2�r > Æ2�M and thereforej�i � aij � Æ2�M+1 + 2�r+1 � 2�r+2 for �i 2 Ii:7



We shall distinguish three 
ases.Case I: aj = ak, am = an.In this 
ase by (2.16) jaj � amj � 2�r+4 and the 
ondition (2.13) implies aj = am and thereforeaj = ak = am = an.Case II: Suppose aj = ak, am < an. We show that this 
ase does not o

ur if (2.13) and (2.15)hold. Without loss of generality we may assume that �j � �k.The interval [am+1; an℄ 
ontains at least 210 intervals of length 2�r, in parti
ular2aj � �j + �k � 2�r+3 = �m + �n � 2�r+3 � am + an � 2�r+4� 2am � 2�r+4 +B210�r � 2am+1 � 2�r+5 +B210�rhen
e aj > am+1+2�r. A similar argument shows that aj+1 < an � 2�r. Thus Ij � [am+1; an℄ andin parti
ular (�j + �k)=2 2 [am+1; an℄. By (2.17) and (2.18)j
(�n) + 
(�m)� 
(�j)� 
(�k)j � 4BÆ:Choose �j ; �k 2 [aj ; aj+1℄ so that j�j � �j j � Æ2�M and j�k � �kj � Æ2�M . Fromj
(�j)� 2
(�j + �k2 ) + 
(�k)j � (
0L(�k)� 
0R(�j)(�k � �j)� (
0L(aj+1)� 
0R(aj))(aj+1 � aj) � Æwe see that also j
(�j)� 2
(�j + �k2 ) + 
(�k)j � Æ + 4 � 2�MÆk
0k1 � 3Æand therefore(2.19) j
(�n)� 2
(�j + �k2 ) + 
(�m)j � (4B + 3)Æ:Now 
(�n)� 2
(�j + �k2 ) + 
(�m) = Z �n�j+�k2 (�n � t)d
0R(t) + Z �j+�k2�m (t� �m)d
0R(t)plus a remainder term (�j + �k � �n � �m)
0R(�j+�k2 ) whi
h vanishes in view of (2.16).By the assumption on a at least one of the intervals [�m; �j+�k2 ℄, [�j+�k2 ; �n℄ 
ontains an interval[ai � �; ai+1 + �℄ with 2�r � ai+1 � ai � 2�r+1 and 0 < � � 2�r�1 so that(2.20) am + 28�rB � ai < ai+1 < an � 28�rBSuppose �rst that [ai � �; ai+1 + �℄ � [�m; �j+�k2 ℄. Then by (2.19)(4B + 3)Æ � Z �j+�k2�m (t� �m)d
0R(t)� Z ai+1+�ai�� (ai � am+1 � 2�MÆ)d
0R(t)= (ai � am+1 � 2�MÆ)(
0R(ai+1 + �)� 
0R(ai � �))� (ai � am+1)(
0L(ai+1 + �)� 
0R(ai � �))� Æ � ai � am+1ai+1 � ai + 2�Æ � Æ8



Therefore ai�am � ai�am+1+2�r+1 � (4B+4)(2�r+1+2�) � B2�r+5, in 
ontradi
tion to (2.20).Similarly if [ai � �; ai+1 + �℄ � [�j+�k2 ; �n℄ we dedu
e that an � ai+1 � B2�r+5, again in
ontradi
tion to (2.20).Case III. We now suppose that aj < ak, am < an and show again that this 
ase does not o

ur.Without loss of generality m � j whi
h then implies by (2.13) that �m < �j < �k < �n.Sin
e �n = �j + �k � �m we obtain0 � Z �j�m �
0R(�j + �k � u)� 
0R(u)�du = 
(�m) + 
(�n)� 
(�j)� 
(�k) � 4BÆwhere the last inequality follows from (2.17-18).If u 2 [�m; �j ℄ then [�j ; �k℄ � [u; �1 � u℄ and, by our assumption on a, [�j ; �k℄ 
ontains aninterval [ai � �; ai+1 + �℄ with 2�r � ai+1 � ai � 2�r+1 and 0 < � � 2�r�1. We 
on
lude that4BÆ � Z �j�m �
0R(�j + �k � u)� 
0R(u)�du� Z �j�m (
0L(ai+1 + �)� 
0R(ai � �))du � �j � �mai+1 � ai + 2�Æand therefore aj � am � �j � �m + 2�r+2 � 4B(2�r+1 + 2�) + 2�r+2 � 25�rB in 
ontradi
tion to(2.13).Thus only Case I 
an o

ur and the Lemma is proved. �3. EstimatesOur �rst Lemma in this se
tion is used to prove estimates for hÆ� where h is suÆ
iently regular.The bounds (3.2) are not best possible; they will be used later to 
onsider error terms in the proofof Proposition 3.2 below.Lemma 3.1. Let h be an absolutely 
ontinuous fun
tion on [0;1) and suppose that limt!1 h(t) = 0.Suppose that s 7! sh0(s) de�nes an L1 fun
tion on [0;1) and letF (�) = Z 10 h0(s)eis�ds:Suppose that � > 0 and that(3.1) jF (�)j + jF 0(�)j � B(1 + j� j)��:Let B(0; R) be the ball with radius R and 
enter 0, and de�ne Ak = B(0; 2k) nB(0; 2k�1), for k > 0,and A0 = B(0; 1).Then(3.2) ZAk sup1=2�t�2 jF�1[h Æ �t ℄(x)jdx . B�2�k(��1) + k2�k�:Proof. Denote by d� surfa
e measure on �� = �
 and for x 2 �
 by n the outward unit normalve
tor. We shall �rst assume that �� is a C2 surfa
e, but the bounds will depend only on the Lip(1)norm of parametrizations. 9



We begin following Hlawka [8℄ and Randol [15℄. Using integration by parts and the divergen
etheorem applied to the ve
tor �eld � 7! (is)�1jxj�2xeishx;�i we obtain(2�)2F�1[h(�(�)t )℄(x) = Z
 h(�(�)=t)eihx;�id�= � Z
 eihx;�i Z 1�(�) t�1h0(s=t)ds d�= �t�1 Z 10 h0(s=t) Zs
 eihx;�id� ds= �t�1 Z 10 h0(s=t)s2 Z
 eihx;s�id� ds= it�1jxj�2 Z 10 sh0(s=t) Z�
 eishx;�ihx; n(�)id�(�) ds:(3.3)Let e� 2 C1(R2 n f0g) be supported in a se
torS = f� : jh �j�j ; ui+ 1j � "gwhere u is a unit ve
tor and � is small; the 
hoi
e(3.4) " � 2�10�2Mwill 
ertainly suÆ
e. Let u? be the unit ve
tor perpendi
ular to u, so that det(u?; u) = 1. Then��\S 
an be parametrized by � 7! u?�+u
(�) so that (2.3)-(2.6) holds. Set �(�) = e�(u?�+u
(�));then �(�) = 0 for j�j � 2�10�M . In S we introdu
e homogeneous 
oordinates (i.e. polar 
oordinatesasso
iated to �
) given by(3.5) (s; �) 7! �(s; �) = s(u?�+ u
(�))with �0 = u
(0) with 4 � �
(0) � 2M ; then�(u?�+ u
(�)) = 1:Note that for the Ja
obian of the map (3.5) we havedet � ���(s; �)� = s(�
0(�) � 
(�))whi
h is bounded below by 2s on the support of � (sin
e �
(�) � 4 � 2M" � 3 and j�
0(�)j �22M" � 2�10 where " is as in (3.4)). LetKt(x) = it�1jxj�2 Z 10 sh0(s=t) Z�
 eishx;�ihx; n(�)i~�(�)d�(�) dsand let Ru be the rotation with Rue1 = u?, Rue2 = u. Using a partition of unity we see that itsuÆ
es to estimate(3.6) Kt(Rux) = it�1jxj�2 Z 10 sh0(s=t) Z eis(x1�+x2
(�))(x2 � x1
0(�))�(�)(�
0(�)� 
(�)) d� ds:10



Let � 2 C1(R) be an even fun
tion supported in [�"; "℄ so that �(�) = 1 for j�j � "=2. We splitKt(Rux) = Kt;1(x) +Kt;2(x)where(3.7) Kt;1(x) =it�1jxj�2 Z 10 sh0(s=t) Z�
 eis(x1�+x2
(�))(x2 � x1
0(�))�(x1+x2
0(�)jxj )�(�)(�
0(�) � 
(�)) d� dsand Kt;2 is de�ned in the same way, with �(� � � ) repla
ed by 1� �(� � � ).In (3.7) we inter
hange the order of integration and see that(3.8) jKt;1(x)j . Btjxj�2 Z ���(x1+x2
0(�)jxj )F 0(tx1�+ tx2
(�))(x2 � x1
0(�))�(�)�� d�:If �(x1+x2
0(�)jxj ) 6= 0 then jx2j � jx1j2�M�1 and, sin
e j�j � 2",(3.9) jx1�+ x2
(�)j � jx2jj
(�)� �
0(�)j � 2M+2"jxj � 2�M�1jxjand it follows from (3.1) and (3.8), (3.9) thatsup1=2�t�2 jKt;1(x)j . Bjxj�1��and hen
e(3.10) ZAk sup1=2�t�2 jKt;1(x)jdx . B2k(1��):In order to estimate Kt;2(x) we integrate by parts with respe
t to �. This yieldsKt;2(x) = jxj�2 Z 10 t�1h0(s=t) Z eis(x1�+x2
(�))��g(x; �)d� ds= tjxj�2 Z F (tx1�+ tx2
(�))��g(x; �)d�with g(x; �) = (x2 � x1
0(�))(1 � �(x1+x2
0(�)jxj ))�(�)(�
0(�) � 
(�))x1 + x2
0(�)Noti
e that jx1 + x2
0(�)j � 
jxj in the support of 1� �(� � � ). This yieldsj��g(x; �)j � CM (1 + j
00(�)j)and 
onsequently, using also (3.1), we obtain for k � 1ZAk sup1=2�t�2 jKt;2(x)jdx . Z (1 + j
00(�)j) ZAk jxj�2(1 + jx1�+ x2
(�)j)��dx d�:11



The inner integral is O(2�k�) if � < 1, O(2�kk) if � = 1 and O(2�k) if � > 1. By 
onvexityR j
00(�)jd� . 2M and hen
e(3.11) ZAk sup1=2�t�2 jKt;2(x)jdx . Bmaxf2�k�; k2�kg:The estimate follows from (3.10) and (3.11).Finally in order to remove the assumption of a C2 boundary we 
an approximate the domain
 by an in
reasing sequen
e of 
onvex sets 
n with smooth boundaries, so that the C1 boundsfor parametrizations of the boundary are uniform in n. The estimate (3.2) holds then for �n withbounds uniformly in n. The Minkowski fun
tionals �n asso
iated with 
n 
onverge to �, uniformlyon 
ompa
t sets and therefore the estimate (3.2) holds for � as well. �We shall now investigate the multiplier (1� �)�+ near the boundary of 
; it suÆ
es to 
onsider(1��)�+b where b is supported in a narrow se
tor. Sin
e the number �
 is invariant under rotations,there is no loss of generality to assume that this se
tor 
ontains u = (0; 1).Proposition 3.2. Let 
 be a 
onvex domain as in (2.1) and let b 2 C10 be supported in the se
torS = f� : j�1j � 2�10M j�2j; �2 < 0g. Let � 7! (�; 
(�)) be the parametrization of �
 \ S as a graph,as in Lemma 2.1. For any subinterval I of [�1=2; 1=2℄ denote by I� the interval with same 
enterand with length 4=3jI j. For ` > 1 let I` be the set of subintervals I of [�1; 1℄ with the property thatjI j � 2�`�5M and(3.12) (t� s)(
0L(t)� 
0R(s)) � 2�`+5 for s < t; s; t 2 I�:Let B be the set of C2 fun
tions � supported on (�1=2; 1=2) so that(3.13) j�(k)(t)j � 1; k = 0; : : : ; 4:(i) Suppose I = (
I � jI j=2; 
I + jI j=2) 2 I`. Let(3.14) m(�) = b(�)�1(2`�1(1� �(�))�2(jI j�1(�1 � 
I))where �1; �2 2 B. Then(3.15) Zjxj�210` sup1=2�t�2 jt2F�1[m℄(tx)jdx . 2�5`:Moreover(3.16) Z sup1=2�t�2 t2�jF�1[m℄(tx)j+ jrF�1[m℄(tx)j�dx . 1 + `:and(3.17) Zjxj>2jyj sup0<t<1 t2��F�1[m℄(tx� ty)�F�1[m℄(tx)��dx . (1 + `)2:(ii) Denote by m�1;�2;I the right hand side of (3.14) and let(3.18) M`f(x) = sup�1;�22B supI2I` jF�1[m�1;�2;I bf ℄(x)j:12



Then kM`fk2 . (1 + `)4kfk2for all f 2 L2(R2 ).Proof. Again we �rst assume that 
 2 C2 but our bounds will only depend on the L1 norms of 
and 
0. This restri
tion 
an then be removed by using Lemma 2.2.We shall now �x �1 and �2 and set h`(s) = �1(2`(1� s)). Let�`(�) = Z 10 h`(s)eis�ds and e�`(�) = Z 10 h0̀ (s)eis�ds:Then j�`(�)j + j�0̀ (�)j . 2�`(1 + 2�`j� j)�4(3.19.1) je�`(�)j + je�0̀ (�)j . (1 + 2�`j� j)�3(3.19.2)by an integration by parts.We apply Lemma 3.1 to h = h` and � = 2 (so F = e�` in (3.1)). Sin
e the right hand side of(3.19.2) is bounded by 22`(1 + j� j)�2 we obtain(3.20) ZAk sup1=2�t�2 jF�1[hl Æ �t ℄(x)jdx . 22`k2�k;this is 
ertainly a favorable estimate if k � 10`. The Fourier transform of b(�)�2(jI j�1(�1 � 
I)) ispointwise bounded by a 
onstant timesHI(x) = jI j(1 + jI jjx1j)2 11 + x22and sin
e jI j � 
2�` it is straightforward to verify (3.15).We now give a di�erent estimate for the integral over the dyadi
 annulus Ak whi
h is used toderive an improved bound for jxj � 210`. Let e� be a C10 fun
tion so that e�(t) = 1 for jtj � 9=16and e�(t) = 0 for jtj � 5=8. Let �I(t) = e�(jI j�1(t� 
I)) so thatsupp(�I ) � I�:Note that j�1j � 2�8M on supp(b) (sin
e j�j � 2M and j�1j � 2�10M j�2j). If also j�1� 
I j � jI j=2and j1� �(�)j � 2�`+1 then����1 � 
I�(�)�(�) ��� � ��� �1�(�) ���j1� �(�)j+ j�1 � 
I j � 2�8M�`+2 + jI j=2 � jI j( 12 + 127 );here we used that jI j � 2�`�5M and M � 3. Consequently�I(�1=�(�)) = 1 if �2(jI j�1(�1 � 
I)) 6= 0 and j1� �(�)j � 2�`+1:Therefore we may write m(�) = b(�)�2(jI j�1(�1 � 
I))em(�)with em(�) = �1(2`�1(1� �(�))�I (�1=�(�)) and estimate the Fourier inverse of em.13



Let � be as in the proof of Lemma 3.1, namely smooth and supported in (�"; ") where " is small(as in (3.4)). Let �0 be smooth and supported in [�1; 1℄, so that �0(s) = 1 for jsj � 1=2. De�ne�0(x; �) = �0(jI j(x1 + x2
0(�)))�(x1 + x2
0(�)jxj )�n(x; �) = ��0(2�n�1jI j(x1 + x2
0(�))) � �0(2�njI j(x1 + x2
0(�)))��(x1 + x2
0(�)jxj ):We write the Fourier integral representing F�1[em(t�1�)℄(x) using 
oordinates � = s(�; 
(�)).Then we split the kernel(3.21) F�1[em(t�1�)℄(x) = 1(2�)2 � eKt(x) +Xn�0Kn;t(x)�where(3.22.1) Kn;t(x) = Z sh`(s=t) Z �n(x; �)�I (�)(
(�) � �
0(�))eis(x1�+x2
(�))d� dsand(3.22.2) eKt(x) = Z sh`(s=t) Z (1� �(x1 + x2
0(�)jxj ))�I (�)(
(�) � �
0(�))eis(x1�+x2
(�))d� dsNote that the sum in (3.21) has only O(log(1+ jI jjxj)) terms sin
e Kn;t(x) = 0 if "jxj � 4jI j�12n.In parti
ular if x 2 Ak \ supp(Kn;t) then 2n � 2kjI j. The kernel K0;t is given byK0;t(x) = i�1t2 Z �0̀ (t(x1�+ x2
(�)))�0(x; �)�I (�)(
(�) � �
0(�))d�:Sin
e det� � 1
(�) 
0(�)� � 1 we may estimateZ sup1=2�t�2 jK0;t(x)jdx . 2�` ZI ZZjx1+x2
0(�)j�jIj�1 (1 + 2�`jx1�+ x2
(�)j)�4dx1dx2 d� . 1:(3.23)
For n > 0 we integrate by parts in � to getKn;t(x) = i Z h`(s=t) Z ��gn(x; �)eis(x1�+x2
(�))d�ds= i Z t�`(t(x1�+ x2
(�)))��gn(x; �)d�where gn(x; �) = �n(x; �)�I (�)(
(�) � �
0(�))x1 + x2
0(�) :Note that if �n(x; �) 6= 0 thenj��gn(x; �)j . (1 + jx2j2�njI j)j
00(�)j + jI j�1jx1 + x2
0(�)j :14



Therefore supt2[1;2℄ jKn;t(x)j. Z�2I�:jx1+x2
0(�)j�2njIj�1 (1 + jx2j2�njI j)j
00(�)j + jI j�1jx1 + x2
0(�)j 2�`(1 + 2�`jx1�+ x2
(�)j)4 d�(3.24)and ZAk supt2[1;2℄ jKn;t(x)jdx. ZI�((1 + 2k�njI j)j
00(�)j + jI j�1) Zju2j�2njIj�1juj�2k ju2j�1 2�`(1 + 2�`ju1j)4 du d�. minf2k�`; 23(`�k)g ZI�(j
00(�)j + 2k�njI jj
00(�)j + jI j�1)d�:(3.25)In the evaluation of the integral we used that juj � 2�k and ju2j � 2njI j�1 implies that ju1j � 2kdue to our assumption on 2njI j�1 � 2k. By assumption (3.12) we have RI� jI jj
00(�)jd� � 2�` andtherefore ZAk supt2[1;2℄ jKn;t(x)jdx . minf2k�`; 23(`�k)g(2k�`�n + 1);again sin
e Kn;t vanishes on Ak if n � k this yields(3.26) Xn ZAk supt2[1=2;2℄ jKn;t(x)jdx . k2�jk�`j:The estimate for eKt is similar to the estimate for the term Kt;2 in the proof of Lemma 3.1. Sin
ein the support of 1� �(� � � ) we have jx1 + x2
0(�)j � jxj we obtain thatZAk sup1=2�t�2 j eKt(x)jdx. ZI�(jI j�1 + j
00(�)j) Z jxj�1 2�`(1 + 2�`jx1�+ x2
(�)j)4 dx d� � C:(3.27)The estimate (3.16) for F�1[m℄ follows immediately from (3.20), (3.26), (3.27) and the L1boundedness of HI . Sin
e m is supported in 
 and t 2 [1=2; 2℄ we 
an write ��jF�1[m(t�1�)℄ = j � F�1[m(t�1�)℄ for a suitable S
hwartz fun
tion  j depending only on 
 and j. The estimate(3.16) for rF�1[m℄ is then immediate.We now turn to the (standard) estimation of the Calder�on-Zygmund integral (3.17). Let Kt =F�1[m(t�1�)℄. The integral in (3.17) 
an be de
omposed as Pk2ZEk whereEk = Zjxj>2jyj sup1�t<2 jK2kt(x� y)�K2kt(x)j dx= Zjxj>2k+1jyj sup1�t<2 jKt(x� 2ky)�Kt(x)j dx:15



If 2kjyj � 1 then this integral is estimated byZjxj>2k+1jyj sup1�t<2 jKt(x)j dx . minf(1 + `); 22`(2kjyj)�1 log(2 + 2kjyj)g;this follows from (3.16) and (3.20). Therefore P2kjyj�1 Ek . (1 + `)2. For 2kjyj � 1 we use theestimate on the gradient in (3.16) and obtainEk � Z sup1�t<2 ��� Z 10 h2ky;riKt(x� s2ky)ds��� dx . 2kjyj(1 + `)so that P2k jyj�1 Ek . 1 + `. Thus (3.17) is proved.Finally, an examination of the above arguments leading to (3.16) also yields the assertion forthe maximal operator in (3.18). First let jxj > 10`; then we use (3.20), an estimate whi
h does notdepend on I . Then, from the shape of the kernels HI , we obtain that(3.28) sup�1;�22B supI2I` ��(�fj�j�210`gF�1[m�1;�2;I ℄) � f(x)�� .M1(H` � f)(x)where H` is an kernel with L1 norm O(2�5`) and M1 is the Hardy-Littlewood maximal fun
tion inthe x1 variable.We dominate (Kn;t�Ak) � f by a Besi
ovi
h type maximal fun
tion; here �Ak is of 
ourse the
hara
teristi
 fun
tion of the annulus Ak. A straightforward analysis of (3.24) yields that for k � 10`(and hen
e 2njI j�1 � 210`)(3.29)��(Kt;n�Ak) � f(x)j . (1 + `)� 1jI�j ZI� �(1 + 2k�njI j)j
00(�)j+ jI j�1�minf1; 22(`�k)gM`;�f(x)d��where M`;� is the maximal operator asso
iated to all re
tangles 
entered at the origin whi
h havee

entri
ity less then 210` and one side parallel to (�; 
(�)). To verify this one notes that if jx1�+x2
(�)j � jx1 + x2
0(�)j in (3.24) then jx1 + x2
0(�)j � jxj.Let M` denote the maximal fun
tion asso
iated to all re
tangles 
entered at the origin, withe

entri
ity � 210`. Then it follows from (3.29) that��(Kt;n�Ak ) � f(x)j . (1 + `)M`f(x):A similar (easier) pointwise estimate holds for eKt. By C�ordoba's result [4℄ the L2 bound for M` isO(1 + `). Summing in n � 10` and k � 10` we 
an dominate �fj�j�210`gjF�1[m℄j(x) by C(1 + `)3times M1(M`f)(x) and this together with (3.28) implies (3.18). �L1 estimates and de
ompositions of the multiplier. We shall now prove the statements ofTheorem 1.1 and 1.2 for p = 1. We �rst re
all the standard dyadi
 de
omposition of the Rieszmultiplier in terms of 1� �.Let �0 2 C10 (R) so that �0(t) = 1 for jtj � 1=2 and �0(t) = 0 for jtj > 3=4. De�ne �`(t) =�0(2`t)� �0(2`�1t) for ` � 1 andm�;`(�) = �`(1� �(�))(1� �(�))�+for ` � 0. By Lemma 3.1 kF�1[m�;`℄k1 = O(2`) for ` � 0 and also(3.30) Zjxj�2k sup1=2�t�2 jF�1[m�;`℄(tx)j . 2`�k2Z sup1=2�t�2 jrF�1[m�;`℄(tx)jdx . 2`16



This estimate is used for small `; the statement about the gradient follows sin
e m`;� has 
ompa
tsupport.To improve the estimate for large `, say ` � 10M , we need to introdu
e a further de
omposition,re�ning the one in x2. It suÆ
es to 
onsider �m`;� where � is supported in the half strip Su asde�ned in (2.2); without loss of generality u = (0; 1).We �x Æ = 2�` and re�ne the partition Au(2�`) = fa0; a1; : : : ; aQg (for notational simpli
ity wedo not indi
ate the dependen
e of this de
omposition on `). De�neaj;� = 8><>: aj+1 � 2���1(aj+1 � aj) if � = 1; : : : ; 2M + `� 112 (aj+1 + aj) if � = 0aj + 2�j�j�1(aj+1 � aj) if � = �2M � `+ 1; : : : ;�1;also set aj;2M+` = aj+1, aj;�2M�` = aj . Let Ij̀;� = [aj;� ; aj;�+1℄, � = �2M � `; : : : ; 2M + ` � 1.Note that two 
onse
utive intervals Ij̀;� have 
omparable length. Moreover if I is the union ofsu
h two 
onse
utive intervals, then I satis�es the hypothesis (3.12) of Proposition 3.2. In orderto see this simply note that (s � t)(
0R(s) � 
0L(t)) � 2�` for t < s; t; s 2 (aj ; aj+1); moreover if Idenotes the union of two subsequent 
losed subintervals Ij̀;� , both of them 
ontained in (aj ; aj+1)then the asso
iated interval I� (blown up by a fa
tor of 4=3) is 
ontained in (aj ; aj+1). In theremaining 
ase, if one of the two subsequent intervals 
ontains aj or aj+1; then the length of I� is� 2�2M�`+2jaj+1�aj j and therefore in this 
ase the quantity (s�t)(
0R(s)�
0L(t)) 
an be estimatedby 2k
0k12�2M+2�` < 2�`.It is now straightforward to 
onstru
t C1 fun
tions �j̀;� so that ea
h �j̀;� is supported in theunion of two 
onse
utive intervals 
ontaining aj;� so thatXj;� [�j̀;�(t)℄2 = 1; jtj � 1and ���� ddt�n�j̀;�(t)��� � C0jIj̀;� j�n; n = 1; 2; 3; 4:De�ne Sj̀;� by [Sj̀;�f(�) = �j̀;�(�) bf (�) and Kj̀;� bydKj̀;�(�) = �j̀;�(�)b(�)m`;�(�);then F�1[bm`;�℄ � f = Pj;� Kj̀;� � Sj̀;�f . The Lp operator norm of Sj̀;� is uniformly bounded in`; j; �. After renormalization we may apply Proposition 3.2 to get that(3.31) kKj̀;�k1 . (1 + `)2�`�:For �xed ` the sum in � 
ontains less than 24M+` terms; hen
e

F�1[�m`;�℄

1 . (1 + `)2Qu(2�`)2�`�. (1 + `)3N(2�`;
)2�`�(3.32)by Lemma 2.3. Now the asserted L1 bound for � > �
 follows from(3.33) N(2�`;
) � C"2`(�
+")by de�nition of �
. 17



We now de�ne the maximal operator M` byM`f(x) = supt>0 jF�1[m�;`(t�1�)℄ � f(x)j:Standard estimates (see [21, 
h. VII℄, [5℄ ) show thatM` is bounded on L2 with norm O(2�`�(1+`)).Moreover standard arguments and (3.30) yieldZjxj>2jyj supt>0 ��F�1[m�;`(t�1�)℄(x � y)�F�1[m�;`(t�1�)℄(x)��dx . 2`;furthermore for ` � 10M we dedu
eZjxj>2jyj supt>0 jF�1[m�;`(t�1�)℄(x� y)�F�1[m�;`(t�1�)℄(x)jdx . (1 + `)4N(2�`;
)2�`�:from (3.17) and Lemma 2.3. This means that M` is of weak type (1,1) and more pre
isely for � > 0��fx : jM`f(x)j � �g�� . (1 + `)4N(2�`;
)2�`� kfk1� ;
f. [25℄, [20℄. Using the familiar result by Stein and N. Weiss [22℄ on summing fun
tions in weakL1 we obtain the weak type (1; 1) inequality for maximal fun
tion supt>0 jF�1[(1 � �=t)�+℄ � f j for� > �
. Sin
e pointwise 
onvergen
e holds for S
hwartz fun
tions the assertion of Theorem 1.2 forgeneral L1 fun
tions follows. �Lp estimates. The Lp estimateskF�1[�m`;� bf ℄kp . 2�`�(1 + `)
p [N(
; 2�`)℄ 4p�3kfkpfor 1 < p � 4=3 are obtained by interpolation from the 
ases p = 1 (see (3.32) above) and p = 4=3.The L4=3 estimate follows by duality from the L4 estimate(3.34) kF�1[�m`;� bf ℄k4 . 2�`�(1 + `)
kfk4for suitable 
. We have made no attempt to optimize the power 
 here; 
 = 6 
ertainly works but isfar from being optimal.In order to obtain (3.34) it suÆ
es to 
onsider(3.35) em(�) := �(�)m`;�(�) Xj:j2a[�j̀;�(j)(�1)℄2where a is a subset of Au(2�`; r), 1 � 2r � 2M+`, u = (0; 1) so that the property (2.13) is satis�edwith B = 2M , and the fun
tion j 7! �(j) takes integer values in [�2M � `+ 1; 2M + `� 1℄.We then have to show that em is a Fourier multiplier on L4 with norm . 2�`�(1 + `)3. Sin
e mis a sum of no more than O((1 + `)3) su
h multipliers the assertion follows.Let Gj be as in (2.14), with B = 2M . If �� is parametrized by (t; 
(t)) in Su then 1� �(�) �2�M j�2 � 
(�1)j and therefore the jth term in the sum (3.35) is supported in Gj . Using Lemma 2.4we may use the familiar argument from [6℄, [4℄ to obtain the estimatekF�1[em bf ℄k4 . 


� Xaj2a jKj̀;�(j) � Sj̀;�(j)f j2�1=2
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We 
ontinue arguing as in C�ordoba [4℄. By (3.31) and the bound O((1+ `)4) for the L2 norm ofthe maximal operatorM` in (3.18) we obtain for nonnegative ! 2 L2Z Xaj2a jKj̀;�(j) � Sj̀;�(j)f(x)j2!(x)dx. 2�2`�(1 + `)2 Z Xaj2a jSj̀;�(j)f(x)j2M`!(x)dx. 2�2`�(1 + `)6


� Xaj2a jSj̀;�(j)f j2�1=2


4k!k2By Rubio de Fran
ia's theorem on square fun
tions for an arbitrary 
olle
tion of intervals [16℄ (or amore elementary version of it where all intervals have 
omparable length) we know that


� Xaj2a jSj̀;�(j)f j2�1=2


4 . kfk4:Putting these estimates together we dedu
e that

F�1[em bf ℄

4 . 2�`�(1 + `)3kfk4whi
h implies (3.34) and �nishes the proof of the Lp boundedness of R�. �Convergen
e in Lp. Given the uniform boundedness of the operators R�;t we sket
h the routineproof of the 
onvergen
e result as stated in Theorem 1.1. Denote by S0 the spa
e of S
hwartz-fun
tions with 
ompa
tly supported Fourier transform; S0 is dense in Lp if 1 � p <1 and dense inC0. Suppose that g 2 S0 so that bg is supported where j�j � R. Let � 2 C10 (R) so that �(s) = 1 ifjsj � 1=2, �(s) = 0 if jsj > 3=4. De�ne S�;t by[S�;tf(�) = �(�(�)=t)(1� �(�)=t)�+ bf(�);then S�;tg = R�;tg for t � 2R. By Lemma 3.1 the 
onvolution kernel of S�;t is an L1 kernel, forall � 2 R, and the family fS�;tg is a standard approximation of the identity. Therefore S�;tg ! guniformly, and in Lp, 1 � p < 1. For general f 2 Lp (or C0) the 
onvergen
e result follows byapproximating f by fun
tions in S0 and the uniform boundedness of the operators R�;t. �4. ExamplesGiven two parameters � 2 (0;1), � 2 (0; 1) we 
onsider a 
onvex domain 
 = 
(�; �) with C1;�boundary so that �
 = maxf ��+1 ; �2(1+�)g for whi
h Theorem 1.1 is sharp. We may think of 
 as apolygonal region with in�nitely many verti
es; however near the verti
es the boundary is regularizedusing primitives of suitable Lebesgue fun
tions of 
lass C�.The set 
 is 
ontained in fx : 4 � jxj � 8g and symmetri
 with respe
t to the re
e
tions(x1; x2) 7! (x1;�x2) and (x1; x2) 7! (�x1; x2). The portion of the boundary whi
h lies in fx :jx1j > 1; jx2j > 1g is given by segments of the lines x2 = �8� x1. It is then enough to parametrizethe boundary in fx : jx1j � 4; x2 < 0g by an even 
onvex fun
tion 
 with 
(0) = �15=2, so that
(t) = �8 + t for 1 � t � 4.Fix � > 0 and de�ne for k � 0(4.1) �k = 1 + [elog2(1+k)2k�℄19



where [x℄ denotes the largest integer � x.We de�ne a doubly indexed sequen
e xj;k byxj;k = 2�k � j2k+1�k ;here k is a nonnegative integer and j = 0; : : : ; �k � 1: We also de�nex�k ;k = x0;k+1 (= 2�k�1) :Note that xj;k+1 � xj0;k if j0 � �k, j � 0, and xj+1;k < xj;k if 0 � j < �k.Let �j;k = xj;k + xj+1;k2 = 2�k � 2j + 12 2�k�1��1k ; j = 0; : : : ; �k � 1;��k ;k = �0;k+1 = 2�k�1 � 122�k�2��1k+1;Then �j;k is the slope of the se
ant 
onne
ting the points (xj+1;k ; x2j+1;k2 ) and (xj;k; x2j;k2 ), and it isof 
ourse also the midpoint of the interval [xj+1;k ; xj;k℄. On a substantial portion of this interval
ontaining the midpoint we shall de�ne 
 so that its graph 
oin
ides with the se
ant, and near theendpoints we shall repla
e it by a more regular C1;� fun
tion. We also set��1;k+1 = ��k�1;k;moreover �j;k = �j;k � �j+1;k ; j = 0; : : : ; �k � 1:��1;k+1 = ��k�1;k � �0;k+1:Note that for 0 � j � �k � 1 the expression �j;k is a
tually independent of j, namely equal to2�k�1��1k .We further split the interval [xj+1;k ; xj;k℄ using points xj+1;k < dj;k < �j;k < bj;k < xj;k wherebj;k = xj;k � 2�k�3��1k if 0 � j � �k � 1dj;k = xj;k � 3 � 2�k�3��1k if 0 � j < �k � 1and d�k�1;k � d�1;k+1 = x�k�1;k + 2�k�2��1k � 2�k�4��1k+1 = ��k�1;k � 2�k�4��1k+1:One may then verify that for 0 � j � �k � 1(4.2) bj;k + dj;k2 = �j;k and bj;k + dj�1;k2 = �j;k + �j�1;k2 :Let g� be the Lebesgue fun
tion on [0; 1℄ asso
iated to the symmetri
al perfe
t sets of Cantortype, with 
onstant ratio of disse
tion = 2�1=� (see Zygmund [26, 
h.V, 3℄; the disse
tions are oftype [2; 0; 1� 2�1=�; 2�1=�℄ in the notation of [26℄). Note that g� is a monotone fun
tion on [0; 1℄with(4.3) g�(0) = 0; g�(1) = 1;Z 10 g�(t)dt = 12;the integral 
an be evaluated sin
e g�(1=2 + s)� 1=2 = 1=2� g�(1=2� s) for 0 � s � 1=2.20



Note that b0;0 = 15=16. On the interval [0; 15=16℄ we de�ne 
 by(4.4) 
(t) =8<: � 152 + d2j;k2 + �j;k(t� dj;k) if dj;k � t � bj;k� 152 + b2j;k2 + �j;k(t� bj;k) + �j�1;k R tbj;k g�( s�bj;kdj�1;k�bj;k )ds if bj;k � t � dj�1;kOn [15=16; 4℄ we de�ne(4.5) 
(t) = ( � 152 + 225512 + 78 (t� 1516 ) + 1256 R 32t�300 g�(s)ds if 1516 � t � 3132�8 + t if 3132 � t � 4One veri�es that for t < 15=16 the fun
tion 
 is C1 with 
(bj;k) = �15=2+b2j;k=2, 
0(bj;k) = �j;k,
0(dj;k�1) = �j�1;k + �j;k = �j�1;k and in view of (4.2), (4.3) also 
(dj�1;k) = �15=2 + d2j�1;k=2.Moreover, sin
e b0;0 = 15=16 and �0;0 = 7=8 it is easily 
he
ked that (4.4) and (4.5) together de�nea C1 fun
tion on [0; 4℄.The fun
tion g� belongs to C�([0; 1℄) (see [26, p.197℄); from this it easily follows that a
tually
 2 C1;� in [0; 4℄; in fa
t(4.6) j
0(t1)� 
0(t2)j . � (2�k��1k )1��jt1 � t2j� if jt1 � t2j � 2�k��1kjt1 � t2j if jt1 � t2j � 2�k��1kif t1; t2 � 2�k.We now estimate the 
overing numbers N(
; Æ), for small Æ. Let m be so that(4.7) 2�m(1+�)e� log2(1+m) � Æ1=2;then we 
an 
over the graph over [0; 2�m℄ with� elog2(1+m)2m� � C"Æ� �2(1+�)�"adja
ent re
tangles with sidelengths (Æ1=2; Æ); here " > 0. Moreover there are(4.8) � Xk�m elog2(1+k)2k� . elog2(1+m)2m�points xj;k in [2�m; 1℄. Therefore if e
 denotes the polygon with symmetry about the x1 and x2axes interpolating the points (xj;k; x2j;k=2) then N(e
) . Æ� �2(1+�)�". Similarly one 
an obtain theappropriate lower bound to see that �e
 = �2(1+�) : Note that the drawba
k of working with e
 isthat the boundary is merely Lips
hitz. To remedy this situation we interpolated using the Cantor-Lebesgue fun
tions. Sin
e the 
overing numbers over the interval [2�m; 1℄ may now in
rease we shallhave to impose the restri
tion ��+1 � �2(1+�) .Fix an interval [bj;k; dj�1;k℄ and n > 0. Then there are � 2n subintervals Is;n of length(2�1=�)n2�k�1��1k so that j(
0(t1)� 
0(t2))(t1 � t2)j . 2�n(1+ 1� )(2�k�1��1k )2 for t1; t2 2 Is;n and sothat 
0 is 
onstant on the 
omplimentary intervals; here we used (4.6). Given small Æ �nd n so that2�n(1+ 1� )(2�k�1��1k )2 � Æ; then 2n � (22k�2kÆ)� ��+1 . Therefore the sum in (4.8) is now repla
ed byXk�m elog2(1+k)2k�(22k(1+�)e2 log2(1+k)Æ)� ��+1 �8>><>>: CÆ� ��+1 if ��+1 > �2+2�C"Æ� ��+1�" if ��+1 = �2+2�C"Æ� �2�+2�" if ��+1 < �2+2� :This implies in parti
ular that(4.9) �
 � maxf �2 + 2� ; ��+ 1g;in fa
t a more 
areful examination of the previous argument would show that (4.9) holds withequality. 21



Lower bounds. Let � 2 C1(R) supported in (1=2; 2) so that b�(�) � 1 for j� j � 210. Let T` bede�ned by(4.10) dT`f(�) = �(2`(1� �(�))) bf (�)where � is the Minkowski fun
tional asso
iated to the set 
 = 
(�; �) de�ned above.Lemma 4.1. The following holds for large positive k. If ` = `(k) is 
hosen so that(4.11) 2�`(k) < (2k�k)�2 < 2�`(k)+1then there is 
 > 0 (independent of k) so thatkT`(k)kLp!Lp � 
� 4p�3k k1� 2pfor p � 1.Proof. Let � 2 C10 (R) so that �(s) = 0 for jsj > 2 and �(s) = 1 for jsj � 1. Then jb�(�)j �C0(1 + j� j)�2 and Re(b�(�)) > 1=2 for j� j � 2�R with suitable R > 10. Fix a small " > 0 and alarge integer L, and assume that `(k)� 100L:We test T`(k) on the fun
tion fk de�ned bybfk(�) = �(22k(�2 + 152 )) NkX�=1�(2 `(k)2 +R(�1 � �L�;k))where Nk = [�k=10L℄. bfk is bounded and supported on a re
tangle of sidelengths 
02�k and 2�2k.One may think of bfk as a modi�ed bump fun
tion; however we lo
alize to tiny strips 
ontaining thelines �1 = �j;`(k) where j = 0 mod L.Clearly kfkk2 . 2�3k=2, by Plan
herel's theorem. Moreoverjfk(x)j . 2�2k(1 + 2�2kjx2j)2 2�R�`(k)=2(1 + 2�R�`(k)=2jx1j)2 ��� NkX�=1 ei�L2�k�1��1k x1 ���and the geometri
 sum is dominated by minfNk; jeiL2�k�1��1k x1 � 1j�1g. Sin
e 2�k�1��1k � 2�`(k)=2and logNk � k a straightforward 
omputation shows that kfkk1 . k. By interpolation(4.12) kfkkp . k�1+2=p2�3k=p0 ; 1 � p � 2:Sin
e �j;k is the midpoint of [xj+1;k ; xj;k℄ only the de�nition of 
 in [dj;k; bj;k℄ will be relevantin 
omputing T`(k)fk. We write out the Fourier integral for T`(k)fk and introdu
e homogeneous
oordinates � = s(t; 
(t)). Set ��;k(s) = �(2R+ `(k)2 (s � �L�;k))). Noti
e 
(t) = � 152 + d2L�;k2 +�L�;k(t � dL�;k) if st 2 supp��;k and that t
0(t) � 
(t) = g�;k where the 
onstant g�;k satis�es7 � g�;k � 8. Then(2�)2T`(k)fk(x) = ZZ �(2`(k)(1� s)) NkX�=1 g�;k��;k(st)eis(x1t+x2
(t))dsdt= NkX�=1 g�;kF�;k(x)(4.13) 22



whereF�;k(x) = Z �(2`(k)(1� s))s eisx2( d2L�;k2 ��L�;kdL�;k� 152 )ds Z �(2R+`(k)=2(u��L�;k))ei(x1u+x2�L�;ku)du:In the �rst integral we expand 1=s = 1 + (1� s)=s and obtain thatF�;k(x) = �k;�(x)A`(k)(x1 + x2�L�;k) �B�;k((d2L�;k2 � �L�;kdL�;k � 152 )x2) +Ek(x2)�where(4.14) A`(�) = 2�R� 2̀ b�(�2�R� 2̀ �)B�;k(�) = 2�`(k)b�(�2�`(k)�)and(4.15) j�k;�(x)j = 1jEk(x2)j � 2k�k12�2`(k):We derive an estimate for x inS�;k = fx : 2`(k)+2 � jx2j � 2`(k)+3; jx1 + �L�;kx2j � 2`(k)=2g:From (4.14-15) we see that(4.16) jF�;k(x)j � 122�3`(k)=2; if x 2 S�;k:If x 2 S�0;k for � 6= �0 then jx1 + �L�;kx2j � jx2(�L�;k � �L�0;k)j �O(2`(k)=2). Therefore, if L issuÆ
iently large,(4.17) jF�0;k(x)j . 2�3`(k)=2(Lj� � �0j)�2; if x 2 S�;k:and we see from (4.16-17)(4.18) kT`(k)fkkp � 
2�3`(k)=2p0N1=pk � 
0(2k�k)�3=p0�1=pk :Comparing (4.12) and (4.18) we obtain the asserted lower bound for the Lp operator norm ofT`(k). �Proof of Theorem 1.3. For given � 2 (0; 1=2) 
hoose � = 2�1�2� and � = �1�� , and de�ne
� = 
(�; �) as above. Note that � = �2+2� = ��+1 so that by formula (4.9) and Theorem 1.1 weknow that R� is bounded on Lp if 1 < p < 4=3 and � > �(�3 + 4=p).For the 
onverse �x � > 0 and assume that R� is bounded on Lp. Let � be as in (4.10). Form(s) = �(2`(1� s)) we use the familiar formula(4.19) m(�) = (�1)[�℄+1�(�+ 1) Z 10 s�m(�+1)(s)�1� �s��+dswhere the derivative is de�ned by [m(
)(�) = (�1)[
℄(�i�)
 bm(�); see [23℄ for the proof of (4.19) forfra
tional �. 23



A s
aling argument shows that for �+ 1 > 0Z 10 s���[�(2`(1� �))℄(�+1)(s)��ds . 2`�and the assumed boundedness of R� and dilation invarian
e implies thatkT`(k)kLp!Lp . 2�`(k):By Lemma 4.1 it follows that ��3+4=pk k1�2=p . (2k�k)2� for large positive k. Taking into a

ountthe de�nition of �k and �, it follows that(4.20) k1� 2p e( 4p�3�2�) log2(1+k) . 4 k1�2� (�+�(3� 4p )):Note that (4p�1�3�2�) = (4p�1�3)(1�2�) in the 
riti
al 
ase � = �(�3+4=p). Sin
e we assumep < 4=3 and � < 1=2 the ne
essity of the 
ondition � > �(�3 + 4=p) follows from (4.20). �Referen
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