
CHARACTERIZATIONS OF HANKEL MULTIPLIERS

GUSTAVO GARRIGÓS AND ANDREAS SEEGER

Abstract. We give characterizations of radial Fourier multipliers as
acting on radial Lp functions, 1 < p < 2d/(d + 1), in terms of Lebesgue
space norms for Fourier localized pieces of the convolution kernel. This
is a special case of corresponding results for general Hankel multipliers.
Besides Lp

−Lq bounds we also characterize weak type inequalities and
intermediate inequalities involving Lorentz spaces. Applications include
results on interpolation of multiplier spaces.

1. Introduction

The purpose of this paper is to study convolution operators with radial
kernels acting on radial Lp functions in R

d. We are interested in the bound-
edness properties of such operators on Lp

rad, the space of radial Lp functions.
It turns out (perhaps surprisingly) that for a large range of p one can actually
prove a characterization in terms of the convolution kernel. Moreover we also
obtain characterizations for the weak type (p, p) inequality, or, more gener-
ally, results involving the interpolating Lorentz spaces Lp,σ

rad for p ≤ σ ≤ ∞.
Here Lp,σ

rad denotes the subspace of radial functions of the Lorentz space

Lp,σ(Rd). Recall that we have the strict inclusion Lp,σ1 ⊂ Lp,σ2 for σ1 < σ2.
The space Lp,∞

rad is the usual weak type p space, and of course Lp,p
rad = Lp

rad.

Let K ∈ S ′(Rd) be a radial convolution kernel, and denote by TK the
convolution operator f 7→ TKf = K ∗ f . We shall always assume that

the Fourier transform K̂ is locally square integrable which is a trivially
necessary condition for Lp boundedness (and also for Lp → Lq boundedness
with q ≤ 2). Now consider the scaled kernels

Kt = t−dK(t−1·).
Note that estimates for TK imply appropriately scaled estimates for TKt ,
t > 0. Let Φ be any radial Schwartz function whose Fourier transform is
compactly supported in R

d \ {0}. By using dilation invariance and testing
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the convolution with Kt on Φ, we get a trivial necessary condition for Lp,1
rad →

Lp,σ boundedness of TK , namely that

(1.1) sup
t>0

‖Φ ∗ Kt‖Lp,σ < ∞.

Our main result is that (1.1) for a single nontrivial radial Φ is also sufficient
for the convolution to map Lp

rad to Lp,σ.

Theorem 1.1. Let K be a radial convolution kernel so that K̂ is locally
square integrable and let TK be the associated convolution operator. Suppose
d > 1, 1 < p < 2d

d+1 , and p ≤ σ ≤ ∞. Then the following statements are
equivalent:

(a) There is a radial Schwartz-function Φ (not identically zero) for which
condition (1.1) is satisfied.

(b) TK maps Lp,1
rad(R

d) boundedly to Lp,σ
rad(R

d).

(c) TK maps Lp
rad(R

d) boundedly to Lp,σ
rad(R

d).

As a consequence one can show that if in addition K̂ is compactly sup-
ported away from the origin then the Lp boundedness of TK is equivalent
with K ∈ Lp

rad. Cf. §10 for this and somewhat stronger results for bound-
edness on Lorentz spaces. We remark that the condition p < 2d/(d + 1) is
necessary since for p ≥ 2d/(d + 1) there are radial Lp kernels whose Fourier
transforms are unbounded and compactly supported in R

d \ {0}, cf. the
comment following Corollary 1.5 below.

It is convenient to formulate these characterizations for more general
Fourier-Bessel (or Hankel) transforms of functions in R

+. As it is well known
([31], ch. IV) the Fourier transform of radial functions can be expressed in
terms of integral transforms on functions defined on R

+, which is equipped
with the measure rd−1dr. To be specific we define the Fourier transform of
a Schwartz function g in R

d by ĝ(ξ) ≡ FRd [g] =
∫

g(y)e−i〈y,ξ〉dx. We recall
that if g is radial, g(x) = f(|x|) then its Fourier transform is radial and is
given by

(1.2) ĝ(ξ) = (2π)d/2Bdf(ρ), |ξ| = ρ,

where Bd denotes a Fourier-Bessel transform acting on functions on the half
line. This transform can be defined for all real parameters d > 1, and it is
given by

(1.3) Bdf(ρ) =

∫ ∞

0
f(s)Bd(sρ)sd−1ds

where

(1.4) Bd(ρ) = ρ−
d−2
2 Jd−2

2
(ρ)
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and Jα denotes the standard Bessel function. This definition is closely re-
lated with the classical (or nonmodified) Hankel transform given by

Hαf(x) =

∫ ∞

0

√
xyJα(xy)f(y)dy;

indeed Bd = M− d−1
2
H d−2

2
M d−1

2
where the multiplication operator Mc is

defined by Mcf(r) := rcf(r). The operator Bd is just the modified Han-
kel transform Hν ≡ Hmod

ν used in most papers on the subject, with the
reparametrization Hmod

ν = B2ν+2. We prefer our notation only because of
the connection with radial Fourier multipliers when d is an integer. For d = 1
one recovers the cosine transform. If d > 1 is an integer then the function
Bd in (1.4) represents (up to a constant) the Fourier transform of the surface
measure on the unit sphere in R

d. For general d ≥ 1 the functions Bd are
eigenfunctions with respect to the second order Bessel differential operator
L = −D2 − d−1

ρ D; here D = d/dρ.

In what follows let

(1.5) dµd = rd−1dr

and let Lp(µd) be the Lebesgue space of measurable functions f with

‖f‖Lp(µd) =
( ∫ ∞

0
|f(r)|prd−1dr

)1/p
< ∞.

We continue to use the notation ‖f‖p for the standard Lp norm on R (with
respect to Lebesgue measure). Let S(R+) be the space of even C∞ functions
on R for which all derivatives decrease rapidly; then Bd is an isomorphism
of S(R+), an isometry of L2(R+, µd), and Bd = B−1

d . Clearly the space
S(R+) is dense in Lp(µd). Moreover if d > 1, f ∈ Lp(µd), and 1 ≤ p <
2d/(d + 1) the Fourier Bessel transform of f is well defined due to the

standard bounds Jα(r) = O(rα) for r → 0 and Jα(r) = O(r−1/2) for r → ∞
([31]). Consequently the operator Tm with

(1.6) Tmf(r) = Bd[mBdf ](r)

is well defined for f ∈ S. We remark that L1(µd) is a commutative Ba-
nach algebra with respect to a certain convolution structure [17], and the
operators (1.6) can then be regarded as generalized convolutions. However
in this paper we shall not need to make use of the precise definition of the
convolution structure.

We now formulate necessary and sufficient characterizations for Lp → Lq

boundedness for Tm as well as extensions to Lorentz space inequalities. Our
main characterization is in terms of size properties of the one-dimensional
Fourier transform of localizations of m.
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Theorem 1.2. Let m ∈ L2
loc([0,∞)), let φ be a C∞ function compactly

supported in R+ (not identically zero). Suppose 1 < d < ∞, 1 < p < 2d
d+1 ,

p ≤ q < 2 and p ≤ σ ≤ ∞. Then the following statements are equivalent.

(i) Tm maps Lp,ω(µd) boundedly to Lq,σ(µd), for ω = min{σ, q}.

(ii) Tm maps Lp,1(µd) boundedly to Lq,σ(µd).

(iii)

(1.7) sup
t>0

t
d( 1

p
− 1

q
)∥∥Bd[φm(t·)]

∥∥
Lq,σ(µd)

< ∞.

(iv) With kt(x) = F−1
R

[φm(t·)](x), the condition

(1.8) sup
t>0

t
d( 1

p
− 1

q
) ∥∥(1 + | · |)− d−1

2 kt

∥∥
Lq,σ((1+|x|)d−1dx)

< ∞

holds.

Condition (1.8) is simpler when q = σ, and in this case we see that Tm is
bounded from Lp(µd) to Lq(µd) (and in fact from Lp,q(µd) to Lq(µd)) if and
only if

(1.9) sup
t>0

t
d( 1

p
− 1

q
)
( ∫ ∞

−∞

∣∣kt(x)
∣∣q(1 + |x|)(d−1)(1− q

2
)dx

) 1
q

< ∞;

here again 1 < p < 2d
d+1 and now p ≤ q ≤ 2 (for the case q = 2 see §8).

Theorem 1.1 is an immediate consequence of Theorem 1.2. If K =
F−1

Rd [m(| · |)] and g(x) = f(|x|) then TKg(x) = Tmf(|x|), by (1.2), and
the condition (1.7) is equivalent with

(1.10) sup
t>0

td(1/p−1/q)
∥∥F−1

Rd [φ(| · |)m(t| · |)]
∥∥

Lq,σ(Rd)
< ∞.

Alternatively, after rescaling, one can express this condition using the ho-

mogeneous Besov type space Ḃ−d/p′,∞(Lq,σ). Namely if K is radial with K̂

locally square integrable then, with Φt := F−1[φ(t| · |)],
∥∥TK

∥∥
Lp

rad(Rd)→Lq,σ
rad(Rd)

≈ ‖K‖Ḃ
−d/p′,∞(Lq,σ)

:= sup
t>0

t−d/p′
∥∥Φ1/t ∗ K

∥∥
Lq,σ .(1.11)

Note that the expression on the right hand side becomes a norm only after
considering the quotient of the space of distributions modulo polynomials;

however the (necessary) assumption that K̂ is locally square integrable ex-
cludes polynomials (and even nonzero constants). As a special case (using
the more familiar notation when q = σ) the operator TK maps boundedly

Lp
rad(R

d) → Lq
rad(R

d) if and only if K̂ ∈ L2
loc and K ∈ Ḃq

−d/p′,∞.
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We remark that no characterizations for p 6= 1 seem to have been observed
before; however almost sharp results on compactly supported multipliers on
Lp

rad(L
2
sph) spaces on R

d, are in [22], in the sense that the exponent (d−1)(1−
p/2) in (1.9) is replaced by (d − 1)(1 − p/2) + ε. Arai [1] proved a similar
result with ε-loss for global Hankel multipliers, essentially by combining
arguments in [22] and [26]. We also note that the necessity of the condition
(1.7) is trivial, and the necessity of conditions related to (1.8) is known from
[16], [25], and [1]; cf. also §4 for an elementary proof of the implication
(iii) =⇒ (iv) in Theorem 1.2.

We state two consequences of the above characterizations; for simplicity
we only consider Lp spaces. It is convenient to define M

p,q
d as the space

of all locally square integrable functions m on R+ for which Tm extends to
a bounded operator from Lp(µd) to Lq(µd), and the norm is given by the
operator norm of Tm.

A first consequence of Theorem 1.2 is that local multiplier conditions
imply global ones, namely for nontrivial φ ∈ C∞

c (R+) one has the following

Corollary 1.3. For d > 1, 1 < p < 2d
d+1 ,

(1.12) ‖m‖M
p,p
d

≈ sup
t>0

‖φm(t·)‖M
p,p
d

.

It is well known that the analogue of this corollary for d = 1 and even
classes of continuous Fourier multipliers in Mp on the real line is false, see
examples by Littman, McCarthy and Rivière [21] and by Stein and Zygmund
[32].

Another failing analogy to Mp(R) concerns the subject of interpolation.
As a straightforward consequence of the characterization we obtain an in-
terpolation result with respect to the second complex interpolation method
[·, ·]θ, introduced by Calderón (see [4], and [2], p.88). In contrast, an exten-
sion of a result of Zafran ([36]), states that the space Mp(R), 1 < p < 2, is
not an interpolation space for any pair (Mp0 , Mp1) with p0 < p < p1, see
Appendix §A.

Corollary 1.4. Suppose 1 < di < ∞, 1 < pi < 2di
di+1 , pi ≤ qi ≤ 2, for i =

0, 1, moreover that (1/p, 1/q, d) = (1 − ϑ)(1/p0, 1/q0, d0) + ϑ(1/p1, 1/q1, d1)
with 0 < ϑ < 1. Then

(1.13) [Mp0,q0

d0
, Mp1,q1

d1
]ϑ = M

p,q
d .

This result follows from interpolation of certain Fourier-localized versions
of weighted Lp spaces (which are defined by (1.8)), see Lemma 2.5 below.
For a related result on real interpolation see §10.
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Finally by standard arguments using Hölder’s inequality and Plancherel’s
theorem condition (1.8) implies the known sufficient criteria of Hörmander
type ([14]), which are formulated using localized L2-Sobolev spaces; these
were termed S(2, α) in [7] and WBV2,α (with α > 1/2) in [15]. The fol-
lowing endpoint bounds in terms of localized versions of Besov spaces seem
to be new; it is an optimal estimate within the class of L2-smoothness as-
sumptions. Recall ‖g‖B2

a,q
≈ (

∑∞
k=0 2kaq‖ĝ‖q

L2(Ik)
)1/q where I0 = [−1, 1] and

Ik = {ξ ∈ R : 2k−1 ≤ |ξ| ≤ 2k}, for k > 1.

Corollary 1.5. For 1 < d < ∞, 1 < p < 2d
d+1 , p ≤ q ≤ 2,

(1.14) ‖m‖M
p,q
d

. sup
t>0

t
d( 1

p
− 1

q
)‖φm(t·)‖B2

a,q
, a = d(

1

q
− 1

2
).

Here, and in what follows, the notation . indicates that in the inequality
an unspecified constant is involved which may depend on d, p, q. Since the
space B2

1/2,p contains unbounded functions for p > 1 the corollary does not

extend to the endpoint p = q = 2d/(d + 1).

This paper. In §2 we gather various facts on Bessel-functions, Littlewood-
Paley inequalities, interpolation and elementary convolution inequalities on
weighted spaces, needed later in the paper. In §3 we derive some pointwise
bounds for the kernels of multiplier transformations, assuming that the mul-
tipliers are compactly supported in (1/2, 2). In §4 we prove the necessity of
the conditions, namely the implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) of
Theorem 1.2. The proof of the main implication (iv) =⇒ (i) is contained
in sections 5-9. In §5 we discuss the basic decomposition into Hardy type
and singular integral operators. The crucial estimate for the main Hardy-
type operator is proved in §6, and §7 contains estimates for better behaved
operators (in particular singular integrals) for which we do not need the
full strength of assumption (1.8). In §8 we give the straightforward proof
of the Lp → L2 bounds and then conclude in §9 the proof of the impli-
cation (iv) =⇒ (i) by an interpolation. In §10 we give the short proofs
of the Corollaries and briefly discuss a further result on real interpolation
and an improved version of our results for multipliers which are compactly
supported away from the origin. Some open problems are mentioned in §11.
An appendix (§A) is included with the above mentioned non-interpolation
results for Fourier multipliers.

2. Preliminaries

Asymptotics for Bessel functions. In order to relate the Hankel trans-
forms of multipliers to the one-dimensional Fourier transform we need to
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use standard asymptotics for Bessel functions (see [10], 7.13.1(3)), namely
for |x| ≥ 1,

Bd(x) =
M∑

ν=0

cν,d cos(x − d−1
4 π)x−2ν− d−1

2

+
M∑

ν=0

c̃ν,d sin(x − d−1
4 π)x−2ν− d+1

2 + x−M ẼM,d(x)

with c0,d = (2/π)1/2, and the derivatives of ẼM,d are bounded. Thus one may
also write down expansions for the derivatives and, after writing the cosine
and sine terms as combinations of exponentials and applying the previous
formula with M replaced by M + k one also gets, , for |x| ≥ 1,

(2.1) B
(k)
d (x) =

M∑

ν=0

(c+
ν,k,de

ix + c−ν,k,de
−ix)x−ν− d−1

2 + x−MEM,k,d(x)

where c±0,0,d = (2π)−1/2e∓i d−1
4

π and the EM,k,d have bounded derivatives:

(2.2) |E(k1)
d,M,k(x)| ≤ C(M, k, k1, d).

Littlewood-Paley inequalities. Let η ∈ C∞(R+) with compact support
away from 0. Let Ljf = Bd[η(2−j·)Bdf ]. Then for 1 < p < ∞ there are the
inequalities

∥∥∥
( ∑

j∈Zd

|Ljf |2
)1/2∥∥∥

Lp(µd)
≤ Cp‖f‖Lp(µd),(2.3)

∥∥∥
∑

j∈Z

Ljfj

∥∥∥
Lp(µd)

≤ C ′
p

∥∥∥
( ∑

|fj |2
)1/2∥∥∥

Lp(µd)
;(2.4)

indeed (2.3) and (2.4) are dual to each other with C ′
p = Cp′ , 1/p + 1/p′ = 1.

By the real (Lions-Peetre) interpolation method the spaces Lp(µd) can be
replaced by Lp,σ(µd), for any σ.

For the proof of (2.3), (2.4) we note that the operators

f 7→
∑

j

±Ljf

are bounded on Lp(µd), 1 < p < ∞, with operator norm independently of
the choice of signs ±. This follows for example by (a non-sharp version of)
the Hörmander type multiplier criterion for modified Hankel transforms in
Gasper and Trebels [14]; for the case of integer d one could simply use stan-
dard results in R

d specialized to radial functions ([29]). Now the inequalities
(2.3), (2.4) follow by the usual averaging argument using Rademacher func-
tions (see [29], ch. IV, §5.2), and a duality argument.
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Remarks on Lorentz spaces. We assume that Ω is a measure space with
given σ-algebra and underlying measure µ. We refer to a thorough discussion
of Lorentz spaces to [31]. There the definition of Lq,σ is given in terms of
rearrangements of f and it is shown that this definition is equivalent to a
norm when 1 < q < ∞, 1 ≤ σ ≤ ∞. Instead of the rearrangement function
one can also use the distribution function and it is easy to check (on simple
functions) that an equivalent quasi-norm on Lq,σ is given by

(2.5) ‖f‖Lq,σ ≈
( ∞∑

ℓ=−∞

2ℓσ
[
µ
(
{x ∈ Ω : |f(x)| > 2ℓ}

)]σ/q
)1/σ

(with the natural ℓ∞ analogue for q = ∞). For the manipulation of vector-
valued functions we shall need the following inequality.

Lemma 2.1. Let 1 < q < r, 1 ≤ σ ≤ ∞ and let {Fj} be a sequence of
measurable functions on Ω. Then
(2.6)∥∥∥

( ∑

j

|Fj |r
)1/r∥∥∥

Lq,σ
≤ C(q, σ, r)

(∑

j

∥∥Fj

∥∥ω

Lq,σ

)1/ω
, ω = min{σ, q}.

Proof. Consider measurable functions H on Ω × Z. We first claim that for
1 < q < r, 1 ≤ σ ≤ ∞

(2.7)
∥∥∥
( ∑

j

|H(·, j)|r
)1/r∥∥∥

Lq,σ(Ω)
≤ c(q, σ, r)‖H‖Lq,σ(Ω×Z)

For the case q = σ this follows by applying the imbedding ℓq →֒ ℓr and then
Fubini’s theorem (interchanging a sum and an integral). For arbitrary σ it
follows by applying the real method of interpolation. Now we apply (2.5)
to the right hand side of (2.7) and estimate for σ ≥ q

‖H‖Lq,σ(Ω×Z) .
( ∑

ℓ

2ℓσ
( ∑

j

µ
(
{x : |H(x, j)| > 2ℓ}

))σ/q)1/σ
.

( ∑

j

( ∑

ℓ

2ℓσµ
(
{x : |H(x, j)| > 2ℓ}

)σ/q
)q/σ)1/q

.
( ∑

j

∥∥H(·, j)
∥∥q

Lq,σ

)1/q
;

here we have used Minkowski’s inequality for the sequence space ℓσ/q. If
σ < q we use instead the imbedding ℓσ/q ⊂ ℓ1 and estimate ‖H‖Lq,σ(Ω×Z) by

( ∑

ℓ

2ℓσ
∑

j

(
µ
(
{x : |H(x, j)| > 2ℓ}

))σ/q
)1/σ

≈
( ∑

j

∥∥H(·, j)
∥∥σ

Lq,σ

)1/σ
.

�



CHARACTERIZATIONS OF HANKEL MULTIPLIERS 9

Elementary inequalities for weighted norms. To handle expressions
such as (1.8) we need some elementary inequalities on convolutions and
dilations.

Lemma 2.2. Let a ≥ 0, and γ > a + 1. Suppose that g, ζ are Lebesgue
measurable on R and ζ satisfies

(2.8) |ζ(x)| ≤ C1(1 + |x|)−γ.

Then for q1 ≥ q ≥ 1

(2.9)
( ∫

|g ∗ ζ(x)|q1(1 + |x|)aq1dx
)1/q1

. C1

( ∫
|g(x)|q(1 + |x|)aqdx

)1/q
.

Also
(2.10)( ∫

|g(tx)|q(1+|x|)aqdx
)1/q

≤ t−1/q max{1, t−a}
(∫

|g(x)|q(1+|x|)aqdx
)1/q

.

Proof. For q = q1 the left hand side of (2.9) is dominated by
∫

(1 + |y|)−γ
( ∫

|g(x − y)|q(1 + |x|)aqdx
)1/q

dy

≤
∫

(1 + |y|)−γ+ady
( ∫

|g(x)|q(1 + |x|)aqdx
)1/q

where we have used 1 + |x| ≤ (1 + |x − y|)(1 + |y|). The integral is finite
since γ > a + 1.

The analogue of (2.9) for q1 = ∞ is also valid; we estimate (assuming
momentarily q > 1)

|g ∗ ζ(x)|(1 + |x|)a .

( ∫
|g(x − y)(1 + |x − y|)a|qdy

)1/q( ∫
(1 + |y|)−γq′(1 + |x|)aq′

(1 + |x − y|)aq′
dy

)1/q′

where the first term is the desired expression on the right hand side of (2.9)

and the second term is . (
∫
(1 + |y|)(a−γ)q′dy)1/q′, hence finite. A similar

argument holds for q = 1. We have now proved the asserted bound for
q1 = ∞ and q1 = q and the intermediate cases follow by interpolation.

Inequality (2.10) follows from (1 + |x|/t) ≤ max{t−1, 1}(1 + |x|) and a
change of variable. �

We shall need the following Lorentz space variant of Lemma 2.2 which
will be used repeatedly.
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Lemma 2.3. Let 1 < q < ∞, 1 ≤ σ ≤ ∞, and let dνα = (1 + |x|)αdx (as
a measure on R). Suppose that ζ satisfies (2.8) for some γ > 1 − β + α/q.
Then

(2.11)
∥∥∥

g ∗ ζ

(1 + | · |)β

∥∥∥
Lq,σ(να)

.
∥∥∥

g

(1 + | · |)β

∥∥∥
Lq,σ(να)

and

(2.12)
∥∥∥

g(t·)
(1 + | · |)β

∥∥∥
Lq,σ(να)

. t−1/q max{1, t−α/q}
∥∥∥

g

(1 + | · |)β

∥∥∥
Lq,σ(να)

Proof. Define Mβf := (1+ |x|)βf(x) and let Sζf(x) = ζ ∗f . Then the asser-
tion is equivalent with the claim that M−βSζMβ is bounded on Lq,σ(να).
Since 1 < q < ∞ and restriction on γ also involves a strict inequality the
general Lorentz space estimate follows from the case q = σ by real interpo-
lation. The Lq(να) boundedness of M−βSζMβ is in turn equivalent to the
inequality (2.9) for the choice q = q1 and aq = α− βq. We may apply (2.9)
since γ > a + 1 = 1 − β + α/q. The proof of (2.12) is similar. �

Independence of the localizing function. Let a ≥ 0, b ∈ R, 1 ≤ p ≤ 2.
Let φ be a smooth function supported on a compact subinterval of (0,∞),
and assume that φ is not identically zero. It will be convenient to denote by
LF(p, a, b) the space of all m which are square integrable over every compact
subinterval of (0,∞) and satisfy the condition

(2.13) sup
t>0

tb
( ∫ ∞

−∞

∣∣F−1
R

[φm(t·)](x)
∣∣p(1 + |x|)apdx

)1/p
≤ A

for some finite A. Here LF refers to localization and to the Fourier transform.

We use Lemma 2.2 and Lemma 2.3 to prove that the choice of the cutoff
function φ in (2.13) and (1.8) does not matter. Moreover we wish, for
suitable φ, use discrete conditions where the sup is taken over dyadic t. To
formulate these choose ϕ ∈ C∞

c (1
2 , 2) with the property that

(2.14)
∑

j∈Z

ϕ2(2−js) = 1, s > 0.

Lemma 2.4. Let 1 < q < ∞, 1 ≤ σ ≤ ∞.

(i) Suppose

(2.15) sup
t>0

tb
∥∥∥
|F−1

R
[φm(t·)]

(1 + | · |)β

∥∥∥
Lq,σ(να)

≤ A < ∞

holds for some φ ∈ C∞
c (R+) which is not identically zero. Let η ∈ C∞

c (R+).
Then the expression analogous to (2.13), but with φ replaced by η, is bounded
by CA, where C does not depend on m.
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(ii) With ϕ ∈ C∞
c (1

2 , 2) satisfying (2.14) the left hand side of (2.15) is
bounded by

(2.16) C sup
j

2jb
∥∥∥
|F−1

R
[ϕm(2j·)]

(1 + | · |)β

∥∥∥
Lq,σ(να)

.

Proof. We begin by observing that
∫ ∞
0 φ2(τs)dτ

τ = c > 0 independent of s.

Hence η(s)m(ts) = c−1
∫ ∞
0 φ2(τs)ηm(ts)τ−1dτ and since if s is taken from

a compact subset of (0,∞) the integral reduces to an integral over [ε, ε−1]
for some ε ∈ (0, 1). Thus

F−1[η(s)m(ts)] =

∫ 1/ε

ε
Φτ ∗

(
τ−1kt/τ (τ

−1·)
)dτ

τ

where Φτ = F−1[φ(τ ·)η] and kt = F−1[φm(t·)]. Now the assertion (i) follows
immediately from (2.11) and (2.12). (ii) is proved similarly; the details are
left to the reader. �

Interpolation. Interpolation results for the spaces LF(p, a, b) are analogous
to those for localized potential spaces in [7], [5], with a very similar proof;
therefore we only give a sketch. We denote by [·, ·]ϑ, [·, ·]ϑ the complex
interpolation methods of Calderón (see [4], and also ch. 4 in [2]).

Lemma 2.5. Let a0, a1 ≥ 0, b0, b1 ∈ R and 1 ≤ p0, p1,≤ 2. Suppose that
(a, b, p−1) = (1 − ϑ)(a0, b0, p

−1
0 ) + ϑ(a1, b1, p

−1
1 ) and 0 < ϑ < 1. Then

(2.17)
[
LF(p0, a0, b0), LF(p1, a1, b1)

]ϑ
= LF(p, a, b)

Sketch of proof. Let ‖K‖L(p,a) := (
∫ ∞
−∞ |K(t)|p(1 + |t|)apdt)1/p and denote

by ℓ∞b (L(p, a)) be the space of sequences of L(p, a) functions {Gj}j∈Z for

which supj 2jb‖Gj‖L(p,a) < ∞. Weighted Lp spaces can be interpolated by
the complex method (see [2], ch. 5) and we have

L(p, a) = [L(p0, a0), L(p1, a1)]ϑ.

By a result of Calderón ([4], §13.6)

(2.18) ℓ∞b (L(p, a)) = [ℓ∞b0 (L(p0, a0)), ℓ
∞
b1 (L(p1, a1))]

ϑ

and one has to show that LF(p, a, b) is a retract of ℓ∞b (L(p, a)); i.e. there
are bounded linear operators

A : LF(p, a, b) → ℓ∞b (L(p, a)) ,

B : ℓ∞b (L(p, a)) → LF(p, a, b) ,
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so that B ◦ A is the identity on LF(p, a, b). These maps are given by
[
Am

]
j

= F−1[ϕm(2j·)] ,(2.19)

BG =
∑

k∈Z

ϕ(2−k·)Ĝk(2
−k·) .(2.20)

A is bounded by definition of the LF(p, a, b) norm and the boundedness of
B is straightforward; one uses Lemma 2.2. Also B ◦ A is the identity on
LF(a, b, p), by (2.14). This shows (2.17), the details are left to the reader. �

Remark. The analogues of these theorems for localized potential spaces are
proved by Connett and Schwartz in [7], see also [5]. In [7] it is also noted that
the analogue of (2.17) fails for the [·, ·]ϑ method (and their argument applies
here as well). In addition, if LFo(p, a, b) denotes the closed subspace of func-
tions for which the expressions 2jb‖F−1

R
[ϕm(2j·)]‖Lp((1+|x|)apdx) tend to 0 as

|j| → ∞, then one also has
[
LFo(p0, a0, b0), LFo(p1, a1, b1)

]
ϑ

= LFo(p, a, b).
This is analogous to a result in [7] on localized potential spaces.

3. Kernel estimates

Assume that the multiplier m has compact support in [12 , 2]. Here we give
pointwise estimates for the kernel of multiplier transformations involving
two Bessel transforms Ba, Bb of possibly different orders; however the main
interesting case is of course a = b = d. We can write for a, b > 0

(3.1) Ba[mBbf ](r) =

∫
Ka,b[m](r, s)sb−1f(s)ds

where the kernel is given by

(3.2) Ka,b(r, s) ≡ Ka,b[m](r, s) =

∫ ∞

0
m(ρ)Ba(ρr)Bb(ρs)ρa−1dρ.

Proposition 3.1. Let a ≥ 1, b ≥ 1, N > 1 and let m ∈ L2 be supported in
[12 , 2]. Then for β, γ = 0, 1, 2, . . .

(3.3)
∣∣∂β

r ∂γ
sKa,b[m](r, s)

∣∣ ≤

CN,β,γ

∑

(±,±)

(1 + |r|)− a−1
2 (1 + |s|)− b−1

2

∫ |F−1[m](±r ± s − u)|
(1 + |u|)N

du.

Proof. We begin with a preliminary observation, which we shall use several
times, namely the inequality

(3.4) (1 + R)−M

∫ |g(u)|
(1 + |u|)N1

du ≤ C(1 + R)−M+N1

∫ |g(R + u)|
(1 + |u|)N1

du;
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this is (similar to the statement in Lemma 2.2) a consequence of the triangle
inequality and a translation in the integral.

Let χ be a C∞ function so that χ(s) = 1 for s ∈ (1/2, 2) and χ is supported
in (1/4, 4). If r, s ≤ 1 then the function

ρ 7→ χ(ρ)ρa−1+β+γB(β)
a (ρr)B

(γ)
b (ρs)

is smooth and has a rapidly decaying Fourier transform, with bounds uni-
form in r, s ≤ 1. Denote the Fourier transform by u 7→ λ(r, s, u). We
may apply Plancherel’s theorem for the inner product and estimate (with
κ = F−1

R
[m])

(3.5) |∂β
r ∂γ

sK[m](r, s)| =
∣∣∣
∫

κ(u)λ(r, s, u)du
∣∣∣ ≤ CN1,β,γ

∫ |κ(u)|
(1 + |u|)N1

du.

Clearly this term is bounded by a suitable constant times any of the terms
on the right hand side of (3.3), as long as |r|, |s| ≤ 1.

Next we consider the case s ≤ 1, r ≥ 1/2 and use the asymptotic expan-
sion (2.1) for Ba(ρr) and its derivatives. We assume that the parameter M
is chosen large, in order to use (3.4), in fact we require M > 2N +(a+ b)/2.

This yields

Ka,b(r, s) =
∑

±

M∑

ν=0

r−
a−1
2

−ν

∫
m(ρ)e±irρη±ν,β,a,b(s, ρ)dρ

+ r−M

∫
m(ρ)ωM,β,γ,a,b(r, s, ρ)dρ

where

η±ν,β,a,b(s, ρ) = c±ν,β,aχ(ρ)ρ
a−1
2

+β+γ−νB
(γ)
b (sρ) ,

ωM,β,γ,a,b(r, s, ρ) = ρ−M+β+γ+a−1EM,β,a(r, s, rρ)B
(γ)
b (sρ) .

The terms in the sum can be realized as convolutions of κ with rapidly

decaying functions, multiplied with r−
a−1
2

−ν . These terms are bounded by

r−
a−1
2

∫ |κ(∓r − u)|
(1 + |u|)N

du

and since |s| . 1 this also implies the bound by the sum of terms on the right
hand side of (3.3). For the error term we argue as above, using Plancherel’s
theorem to estimate

r−M
∣∣∣
∫

κ(u)ω̂M,β,γ,a,b(r, s, u)du
∣∣∣ . r−M+N

∫ |κ(u)|
(1 + |u|)N

du

and the desired estimate follows from using (3.4), recall M > 2N +(a−1)/2.
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The estimations for the case r . 1 and s & 1 are similar, the roles of r
and s are reversed.

Finally, to handle the case r, s ≥ 1/2 we use the asymptotic expansion
(2.1) for both Ba(ρs) and Bb(ρr), again with large M . We then write

∂β
r ∂γ

sKa,b(r, s) =

∫ ∞

0
m(ρ)ρa−1+β+γB(β)

a (rρ)B
(γ)
b (sρ)dρ

as

∑

ν,ν′

∑

±,±

c±ν,β,ac
±
ν′,γ,br

− a−1
2

−νs−
b−1
2

−ν′

∫
m(ρ)ρ

a−b
2

+β+γ−ν−ν′

eiρ(±r±s)dρ

(3.6)

+
∑

ν

∑

±

c±ν,β,ar
− a−1

2
−νs−M

∫
m(ρ)ρ

a−1
2

+β+γ−ν−MEM,β,b(ρs)e±iρrdρ

+
∑

ν′

∑

±

c±ν′,γ,bs
− b−1

2
−ν′

r−M

∫
m(ρ)ρa− b+1

2
+β+γ−ν′−MEM,γ,d(ρr)e±iρsdρ

+ (rs)−M

∫
m(ρ)ρa−1+β+γ−2MEM,γ,a(ρr)EM,β,b(ρs)dρ.

The first (double) sum in (3.6) is clearly bounded by the right hand side
of (3.3). The second, third and fourth terms are bounded, by the previous
arguments by a constant times

r−
a−1
2 sN−M

∫ |κ(∓r + u)|
(1 + |u|)N

du, s−
b−1
2 rN−M

∫ |κ(∓s + u)|
(1 + |u|)N

du,

and (rs)N−M
∫
|κ(u)|(1+ |u|)−Ndu, respectively. However by using inequal-

ity (3.4) and the condition M > 2N + (a + b)/2 these terms are seen to be
also bounded by the right hand side of (3.3). �

Proposition 3.1 is mainly interesting as an estimate for general multipliers.
However for the proof of necessary conditions we record a straightforward
consequence for smooth multipliers, in the special case where a = 1, b = d.

Corollary 3.2. Let d ≥ 1 and let χ ∈ C∞ be supported in [1/4, 4]. Then
for any M ≥ 0

|B1[χBdf ](r)| ≤ CM

∫ ∞

0

|f(s)|sd−1

(1 + |r − s|)M (1 + s)
d−1
2

ds

Proof. We use the estimate of Proposition 3.1 in conjunction with a simple
convolution inequality which is based on the rapid decay of F−1[χ]. �
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4. The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) of Theorem 1.2

Proof of (i) =⇒ (ii). This follows from Lp,1(µd) ⊂ Lp,σ(µd), for σ ≥ 1,
with continuous imbedding. �

Proof of (ii) =⇒ (iii). We use the dilation formula

(4.1) Bd[g(t−1·)](r) = tdBd[g](tr).

If φ ∈ C∞
c (R+) then the function f1 := Bdφ belongs to Lp,1(µd) for all p and

has positive norm. Now set ft = t−d(1−1/p)Bd[φ(t−1·)]; then the Lp,1(µd)
norm of ft is independent of t. Let ‖m‖ denote the Lp,1(µd) → Lq,σ(µd)
operator norm of Tm. We may estimate

‖f1‖Lp,1(µd)‖m‖ = ‖ft‖Lp,1(µd)‖m‖ ≥ ‖Bd[mBdft]‖Lq,σ(µd)

= t−d(1−1/p)‖Bd[φ(t−1·)m]‖Lq,σ(µd) = td(1/p−1/q)
∥∥Bd[m(t·)φ]

∥∥
Lq,σ(µd)

which proves the implication. �

Proof of (iii) =⇒ (iv). Let uev(t, ρ) the even extension of φ(ρ)m(tρ) to R.
Let ht := F−1

R
[uev(t, ·)]. We claim that it suffices to show

(4.2)
∥∥(1 + | · |)− d−1

2 ht

∥∥
Lq,σ(ν)

.
∥∥Bd[φm(t·)]

∥∥
Lq,σ(µd)

, q < 2,

where dν(x) = (1 + |x|)d−1dx. Indeed if (4.2) holds let ζ ∈ S(R) so that ζ̂

is supported in (1/4, 4) and ζ̂(ρ) = 1 on [1/2, 2]. Then kt = ζ ∗ ht and an
application of (2.11) shows that we can replace ht by kt in (4.2).

We proceed to show (4.2). Since B1 is the cosine transform and since B2
d

is the identity (4.2) follows from the inequality

(4.3)
∥∥(1 + (·))− d−1

2 B1[χBdg]
∥∥

Lq,σ((1+r)d−1dr)
. ‖g‖Lq,σ(µd), q ≤ 2,

applied to g = Bd[φm(t·)]. Here the function χ is assumed to be smooth and
supported in (1/4, 4) and equal to one on the support of φ. This inequality is
related to and could be derived from the more sophisticated transplantation
theorem of Stempak [33] on the composition of nonmodified Hankel trans-
forms, but (4.3) has an easy direct proof: We first note that (4.3) follows
by real interpolation from the Lq inequalities, i.e. the case q = σ. Thus it
suffices to show

(4.4)
∥∥B1[χBdg]

∥∥
Lq((1+r)(d−1)(1−q/2)dr)

. ‖g‖Lq(µd).

This in turn follows easily from Corollary 3.2 and an estimate of Hardy
type. Indeed changing variables s = r+u and an application of Minkowski’s
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inequality yields
∥∥B1[χBdg]

∥∥
Lq((1+r)(d−1)(1−q/2)dr)

.

∫ ∞

−∞
(1+|u|)−N

( ∫ ∞

r=−u
(1+r)(d−1)(1−q/2) |f(r + u)|q(r + u)(d−1)q

(1 + |r + u|) d−1
2

q
dr

)1/q
du.

We use the estimate (1+r)α . (1+|r+u|)α(1+|u|)α for α = (d−1)(1−q/2).
Thus the last displayed term is seen to be bounded by

C

∫ ∞

−∞
(1 + |u|)−N+(d−1)(1−q/2)

( ∫ ∞

−u
|f(r + u)|q(r + u)d−1dr

)1/q
du

which for large N is . ‖f‖Lq(µd). This shows (4.4) and finishes the proof of
the implication (iii) =⇒ (iv). �

5. Sufficiency: The basic decomposition

In this section we begin the proof of the main implication (iv) =⇒ (i) of
Theorem 1.2. Let ϕ ∈ C∞

c (1
2 , 2) as in (2.14). Let κj(r) = F−1

R
[ϕm(2j·)], let

(5.1) Aj(q, σ) =
∥∥(1 + | · |)− d−1

2 κj

∥∥
Lq,σ(ν)

with dν = (1 + |x|)d−1dx, and

(5.2) A ≡ A(p, q, σ) := sup
j

2
jd( 1

p
− 1

q
)
Aj(q, σ).

Define

(5.3) Kj = K[ϕm(2j·)]
(cf. (3.2)) and

(5.4) T jf(r) =

∫
2jdKj(2

jr, 2js)f(s)sd−1ds.

Define Littlewood-Paley cutoffs Lj , L̃j by Bd[Ljf ](ρ) = ϕ(2−jρ)Bdf(ρ)

and Bd[L̃jf ](ρ) = η(2−jρ)Bdf(ρ) where η is supported in (1/4, 4) and equal

to 1 on the support of ϕ. Then Bd[mBdf ] =
∑

j LjT
jL̃jf . We apply (the

Lorentz space analogues of) the Littlewood-Paley inequalities (2.3), (2.4)

(one with the Lj , the other one with the L̃j). Using also Lemma 2.4 (which
justifies the use of the specific cutoff function ϕ in (2.14)) we see that The-
orem 1.2 follows from the inequalities for vector-valued functions {fj}j∈Z,

(5.5)
∥∥∥
(∑

j

|T jfj |2
)1/2∥∥∥

Lq,σ(µd)
. A(p, q, σ)

∥∥∥
( ∑

j

|fj |2
)1/2∥∥∥

Lp,ω(µd)
.
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For a further decomposition we introduce the notation

χn(r) = χ[2n,2n+1]

and decompose a.e. into three parts

(5.6) T jf =
∑

n∈Z

χn

( ∑

m<j+n−5

+
∑

j+n−5≤m
≤j+n+5

+
∑

m>j+n+5

T j [fχm−j]
)
.

The first term will contribute to a Hardy type (or Hilbert integral type)
operator whose estimate needs the full strength of the assumption. The sec-
ond term will contribute to a singular integral operator, for vector-valued
functions, whose estimation however will not require the full strength of
our assumption. We consider the third term as an “error” term which con-
tributes again to a better behaved Hardy type operator.

We let

Hj,mf =
∑

n>m−j+5

χnT j [χm−jf ],(5.7)

Sj,n,if = χnT j [χn+if ],(5.8)

Ej,mf =
∑

n<m−j−5

χnT j [χm−jf ].(5.9)

By (5.6)

T j =
∑

m∈Z

Hj,m +
∑

n∈Z

5∑

i=−5

Sj,n,i +
∑

m∈Z

Ej,m.

We now state the main estimates regarding these three terms. The im-
plicit constants may depend on the parameters p, q, σ, ε, d. For the main
term we have

Proposition 5.1. For m ∈ Z, 1 < p ≤ q < 2, 1 ≤ σ ≤ ∞

(5.10)
∥∥Hj,mf‖Lq,σ(µd)

. min{2−m(d( 1
p
− 1

2
)− 1

2
)
, 2

m d
p′ }2jd( 1

p
− 1

q
)
Aj(q, σ)‖f‖Lp,∞(µd).

Note that in the range of interest, 1 < p < 2d
d+1 , these estimates can be

summed in m.

The estimation of the remaining two terms (5.8), (5.9) does not need
the full strength of our assumptions. To formulate the appropriate weaker
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hypotheses let, for ε ≥ 0, 1 ≤ u < 2

Bj(u, ε) =
( ∫ ∞

−∞
|κj(x)|u(1 + |x|)uεdx

)1/u
,

(5.11)

B(ε, p, q) = sup
j

2jd(1/p−1/q)Bj(u(p, q), ε), where
1

u(p, q)
=

1
p + 1

q − 1
2
p − 1

.

(5.12)

Proposition 5.2. Let ε > 0, 1 < p ≤ q < 2, 1 ≤ σ ≤ ∞, and let θ ≡
θ(p, q) = (1

p − 1
q )/(1

p − 1
2). For m ∈ Z,

(5.13)
∥∥Ej,mf‖Lq,σ(µd)

. B(ε(1 − θ), p, q) min{2−m(1−θ)ε, 2m(1−θ)(d−1)}‖f‖Lp,σ(µd).

The square-function estimates associated to {Sj,n,i}j∈Z can be seen as
estimates for vector-valued singular integrals under the assumption B(ε) <
∞, for small ε > 0.

Proposition 5.3. For n ∈ Z, −5 ≤ i ≤ 5, 1 < p < 2,

(5.14)
∥∥∥
( ∑

j

|Sj,n,ifj |2
)1/2∥∥∥

Lq,σ(µd)
. B(ε, p, q)

∥∥∥
( ∑

j

|fj |2
)1/2∥∥∥

Lp,σ(µd)

To see that the conditions of Propositions 5.2 and 5.3 are less restrictive
than the condition (1.8) we note

Lemma 5.4. Suppose p < 2d
d+1 , p ≤ q < 2, and 1

u = p−1+q−1−1
2p−1−1

. Then there

is ε = ε(p, q) > 0 so that Bj(u, ε) . Aj(q, σ), for all σ ≤ ∞.

Proof. We begin by observing that (1 + |x|)−α belongs to the Lorentz space
Lρ,1(ν) if and only if αρ > d. Now write

Bj(u, ε) =
( ∫ |κ(x)|u

(1 + |x|)u d−1
2

(1 + |x|)εu+ d−1
2

u+1−ddν(x)
)1/u

with dν(x) = (1 + |x|)d−1. Note that by assumption the Lq/u,∞(ν) norm of
|κj |u(1+ |x|)−u(d−1)/2 is bounded by Aj(q, ε)

u. Thus it suffices to check that
for sufficiently small ε the function

Vε(x) = (1 + |x|)εu+ d−1
2

u+1−d

belongs to L(q/u)′,1(ν). This holds under the condition (d − 1)(1 − u/2) >

d(1 − u/q). Since u−1 = p−1+q−1−1
2p−1−1

a straightforward computation shows

that the condition is equivalent to an inequality which is independent of
q ∈ [p, 2), namely just p < 2d/(d + 1). �
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For later use let us also observe that B(ε) ≡ B(ε, p, p) is independent of
p, namely

(5.15) B(ε) = sup
j

‖κj‖L1((1+|x|)εdx).

Moreover we have

(5.16) Bj(ε, u1) . Bj(ε, u), u1 ≥ u;

this follows from the fact that the Fourier transform of κj is compactly
supported and therefore can be written as a convolution with a Schwartz-
function; we then apply Lemma 2.2. Next if 1/p − 1/q = 1/p1 − 1/q1 and
p ≤ p1 ≤ q1 ≤ 2 then u(p, q) ≤ u(p1, q1) and from (5.16) we see that

(5.17) B(ε, p1, q1) . B(ε, p, q),
1

p
− 1

q
=

1

p1
− 1

q1
, p ≤ p1 ≤ q1 ≤ 2.

Vice versa if ε > 0, and p ≤ q < 2 there is a pair (p∗(ε), q∗(ε)) with
1/p∗ − 1/q∗ = 1/p − 1/q, and p∗ > p, q∗ ≤ 2 so that

(5.18) B(ε/2, p, q) . B(ε, p̃, q̃),
1

p
− 1

q
=

1

p̃
− 1

q̃
, p̃ < p∗(ε).

The latter inclusion follows by Hölder’s inequality and will be useful for
some interpolations.

Proof of Theorem 1.2, given Propositions 5.1, 5.2, 5.3. We need to
estimate the square-function on the left hand side of (5.5) with T j replaced

by one of the terms
∑

m Hj,m,
∑

n∈Z

∑5
i=−5 Sj,n,i, and

∑
m Ej,m.

Observe that Hj,mfj = Hj,m[fjχm−j] and we bound

∥∥∥
( ∑

j

∣∣∣
∑

m

Hj,mfj

∣∣∣
2)1/2∥∥∥

Lq,σ(µd)
≤

∑

m

∥∥∥
( ∑

j

∣∣Hj,m[fjχm−j ]
∣∣2

)1/2∥∥∥
Lq,σ(µd)

≤
∑

m

( ∑

j

∥∥Hj,m[fjχm−j]
∥∥ω

Lq,σ(µd)

)1/ω
, ω = min{q, σ}.

Here we have used Minkowski’s inequality for the m-summation, followed
by Lemma 2.1. Let δ(p) = min{d/p′, d(1/p − 1/2) − 1/2} then δ(p) > 0 for
1 < p < 2d

d+1 and by Proposition 5.1 the last expression in the displayed
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formula is bounded by CA(p, q, σ) times

∑

m∈Z

2−|m|δ(p)
( ∑

j

∥∥fjχm−j

∥∥ω

Lp,∞(µd)

)1/ω

.
∑

m∈Z

2−|m|δ(p)
( ∑

j

∥∥fjχm−j

∥∥ω

Lp,ω(µd)

)1/ω

.
∑

m∈Z

2−|m|δ(p)
∥∥∥ sup

j
|fjχm−j |

∥∥∥
Lp,ω(µd)

.
∥∥∥ sup

j
|fj|

∥∥∥
Lp,ω(µd)

.
∥∥∥
( ∑

j

|fj|2
)1/2∥∥∥

Lp,ω(µd)
.

Here, in order to bound the second expression, we have used (2.5), and
the assumption that ω ≥ p, together with the disjointness of the intervals
[2m−j, 2m−j+1). This completes the proof of the Lp,ω(ℓ2, µd) → Lq,σ(ℓ2, µd)
bound for {

∑
m Hj,mfj}j∈Z. The terms {

∑
m Ej,mfj}j∈Z are estimated sim-

ilarly, given Proposition 5.2 and Lemma 5.4.

Concerning the terms Sj,n,i, let us consider the Lp → Lq estimates. We
recall Sj,n,ifj = χnSj,n,i[fjχn+i] and use Proposition 5.3, for fixed i, and
n. In view of the cutoffs χn(r), χn+i(s), −5 ≤ i ≤ 5 the uniform Lebesgue
space estimate of Proposition 5.3 also gives an Lp(µd) estimate for the sum,

∥∥∥
( ∑

j

∣∣∣
∑

n

Sj,n,ifj

∣∣∣
2)1/2∥∥∥

Lq(µd)
≤ Cε,pB(ε, p, q)

∥∥∥
( ∑

j

|fj |2
)1/2∥∥∥

Lp(µd)
.

We sum in i ∈ {−5, . . . , 5} and by Lemma 5.4 we obtain the desired Lp → Lq

estimate for the singular integral part in the range 1 < p < 2d/(d + 1). By
real interpolation this extends to the Lp,σ → Lq,σ estimates.

6. Proof of Proposition 5.1

Let In = [2n, 2n+1], and Rn = [2n,∞). We estimate

∥∥∥
∑

n>m−j+5

χnT j [fχm−j]
∥∥∥

Lq,σ(µd)

≤
∥∥∥χRm−j+5

∫
2jd|Kj(2

j ·, 2js)||f(s)|χm−j(s)s
d−1ds

∥∥∥
Lq,σ(µd)

= 2−jd/q
∥∥∥χRm+5

∫

Im

|Kj(·, s)||f(2−js)|sd−1ds
∥∥∥

Lq,σ(µd)
(6.1)

by changes of variables in s and r.
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We now use the kernel estimate of Proposition 3.1 and set

(6.2) Wj(x) =

∫ |κj(x − u)|
(1 + |u|)N

du.

We apply Minkowski’s inequality (i.e. the continuous form of the triangle
inequality in the Lorentz space Lq,σ which is a Banach space) and see that
the expression (6.1) is controlled by

2−jd/q

∫

Im

|f(2−js)| sd−1

(1 + s)
d−1
2

∑

(±,±)

∥∥∥χRm+5

Wj(± · ±s)

(1 + ·) d−1
2

∥∥∥
Lq,σ(µd)

ds.

It is now crucial that in the inner norm the functions are restricted to the
set where r ≥ 2m+5 while s ≤ 2m+1. We may therefore change variables and
use the bound (1 + |r − s|) ≥ c(1 + r) in this range, so that

∥∥∥χRm+5

Wj(± · ±s)

(1 + ·) d−1
2

∥∥∥
Lq,σ(µd)

.
∥∥∥

Wj

(1 + | · |) d−1
2

∥∥∥
Lq,σ(ν)

, s ≤ 2m+1,

where dν = (1 + |x|)d−1dx. By Lemma 2.3 the term on the right hand side

is also controlled by
∥∥κj(1 + | · |)− d−1

2

∥∥
Lq,σ(ν)

, which is Aj(q, σ).

Thus we see that the expression (6.1) is bounded by

C2jd(1/p−1/q)Aj(q, σ)

∫

Im

2−jd/p|f(2−js)|(1 + s)−(d−1)/2sd−1ds.

It remains to bound the s-integral. It is easy to check that the restriction
of Ω(s) = (1 + s)−(d−1)/2 to the interval Im belongs to Lp′,1(Im, µd) and
satisfies the bounds

∥∥χmΩ
∥∥

Lp′,1(µd)
.

{
2−m(d(1/p−1/2)−1/2) if m ≥ 0,

2md/p′ if m ≤ 0,

and thus, by duality
∫

Im

2−jd/p|f(2−js)| sd−1

(1 + s)
d−1
2

ds ≤ ‖χmΩ‖Lp′,1(µd)‖2−jd/pf(2−j·)‖Lp,∞(µd)

. min{2−m(d(1/p−1/2)−1/2), 2md/p′}‖f‖Lp,∞(µd).

This finishes the proof. �

7. More Lp estimates

In this section we consider the case p = q of Propositions 5.2 and 5.3; the
general case will be handled in §9. The results of this section together with
the previous section complete the proof of Theorem 1.2 in the case p = q. In
what follows we may also assume p = σ since the Lp,σ boundedness results
follow by interpolation and replacing ε with ε/2.
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Proof of Proposition 5.2, p = q = σ. We begin with the estimate (6.1)
which is still valid but continue differently since now n + j ≤ m − 5, thus

r ≪ s. Let I∗m = [2m−1, 2m+2]. Set hp,j(s) = 2−jd/pf(2−js)s
d−1

p . Then the
right hand side of (6.1) is estimated by

∑

(±,±)

( ∑

n≤m−j−5

∫

In+j

∣∣∣
∫

Im

|Wj(±r ± s)|
(1 + s)

d−1
2

hp,j(s)s
(d−1)/p′

(1 + r)
d−1
2

ds
∣∣∣
p
rd−1dr

)1/p

.
∑

(±,±)

( ∫ 2m−3

0

∣∣∣
∫

I∗m

|Wj(±y)|
(1 + y)

d−1
2

[χmhp,j ](y ± r)dy
∣∣∣
p 2

m(d−1) p
p′ rd−1

(1 + r)
d−1
2

p
dr

)1/p
.

If m > 0 this is dominated by

C
∑

±

2−mε

∫
|Wj(y)|(1 + |y|)ε

( ∫ ∣∣[χmhp,j ](y ± r)
∣∣pdr

)1/p
dy

. 2−mε‖κj‖L1(1+|·|)εdy‖fχm−j‖Lp(µd).

If m < 0 we may instead estimate 2m(d−1)p/p′rd−1 ≤ 2m(d−1)p; this yields
the bound

2m(d−1)‖κj‖1‖fχm−j‖Lp(µd)

instead. This finishes the proof. �

Proof of Proposition 5.3, p = q = σ. We use standard arguments for sin-
gular integrals for ℓ2-valued kernels and functions. First, by orthogonality,

∥∥∥
( ∑

j

|Sj,n,ifj |2
)1/2∥∥∥

L2(µd)
≤

∥∥∥
( ∑

j

∣∣T j [fjχn−i]
∣∣2

)1/2∥∥∥
L2(µd)

. sup ‖κ̂j‖∞
∥∥∥
( ∑

j

|fj |2
)1/2∥∥∥

L2(µd)
.

To prove the Lp(µd) bounds for 1 < p < 2 it suffices, by the Marcinkiewicz
interpolation theorem, to prove the weak type (1, 1) inequality

(7.1) µd

({
r :

( ∑

j

|Sj,n,ifj |2
)1/2

> λ
})

. Bλ−1
∥∥∥
( ∑

j

|fj |2
)1/2∥∥∥

L1(µd)
;

here B = B(ε) as in (5.15).

Set hj(s) = fj(s)(2
−ns)d−1χn+i(s), so that |hj| and |fj | are of comparable

size on In+i. For fixed λ > 0 we make a Calderón-Zygmund decomposition
of the ℓ2 valued function {hj}, at height λ/B (see [29]). We thus decompose

hj = gj + bj where ‖~g‖L∞(ℓ2) ≤ λ/B, ‖~g‖L1(ℓ2,ds) + ‖~b‖L1(ℓ2,ds) . ‖~h‖L1(ℓ2,ds)

Furthermore bj =
∑

ν bj,ν so that bj,ν is supported in a dyadic subinterval
Jν of In+i, with center sν and length 2Lν . The interiors of the intervals
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Jν are disjoint, and we have |Jν |−1
∫
Jν

|~bν(s)|ℓ2ds . λ/B and
∑

ν |Jν | ≤
Bλ−1‖~h‖L1(ℓ2,ds). Finally

∫
bj,νds = 0 for all j, ν.

Note that Sj,n,ifj = Sj,n,i~gj +
∑

ν Sj,n,i
~bj,ν where gj(s) = gj(s)(2

n/s)d−1

and bj,ν(s) = bj,ν(s)(2
n/s)d−1. We estimate

µd({r ∈ In+i : |{Sj,n,igj(r)}|ℓ2 > λ/2}) . λ−2B2‖~g‖2
L2(ℓ2,µd)

. λ−1B‖~g‖L1(ℓ2,µd) . λ−1B‖~f‖L1(ℓ2,µd)(7.2)

For each interval Jν let J∗
ν denote the interval with same center and tenfold

length. Also let Ω = ∪νJ∗
ν then

(7.3)

µd(Ω) . 2n(d−1)
∑

|Jν | . Bλ−12n(d−1)‖~h‖L1(ℓ2,ds) . Bλ−1‖~h‖L1(ℓ2,µd).

It remains to estimate

µd

({
r ∈ In \ Ω :

( ∑

j

∣∣Sj,n,i

[∑

ν

bj,ν

]∣∣2
)1/2

> λ/2
})

(7.4)

. λ−1

∫

In\Ω

( ∑

j

∣∣∣Sj,n,i

[∑

ν

bj,ν

]∣∣∣
2)1/2

rd−1dr

. λ−12n(d−1)
∑

ν

∑

j

∫

In\J∗

ν

∣∣Sj,n,ibj,ν(r)
∣∣dr(7.5)

Note that

Sj,n,ibj,ν(r) = 2n(d−1)

∫
2jdKj(2

jr, 2js)bj,ν(s)ds

To estimate the integral in (7.5) we distinguish the cases j ≥ −Lν , j ≤ −Lν .
Note that Lν ≤ n + 5 as Jν ⊂ In+i.

If j ≥ −Lν (≥ −n− 5) we use the kernel estimate of Proposition 3.1 and
obtain, with the notation Wj in (6.2) and r, s ≈ 2n

|Sj,n,ibj,ν(r)| .
∑

±,±

2jd2n(d−1)

(1 + 2jr)
d−1
2 (1 + 2js)

d−1
2

∫
Wj(±2jr ± 2js)|bj,ν(s)|ds

.
∑

±,±

∫
2jWj(±2jr ± 2js)|bj,ν(s)|ds
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and if r /∈ J∗
ν then |r − s| ≈ |r − sν | > 2Lν . Consequently

∫

In\J∗

ν

∣∣Sj,n,ibj,ν(r)
∣∣dr .

∫

|x|>2j+Lν

|Wj|(x)dx

∫
|bj,ν(s)|ds

. 2−(j+Lν)εB(ε)
∥∥bj,ν

∥∥
L1(ds)

.(7.6)

If j < −Lν we use the cancellation of the bj,ν to write

∣∣Sj,n,ibj,ν(r)
∣∣ = 2n(d−1)

∣∣∣
∫

2jd
[
Kj(2

jr, 2js) −Kj(2
jr, 2jsν)

]
bj,ν(s)ds

∣∣∣

. 2n(d−1)2j+Lν

∫ 1

σ=0

∫
2jd

∣∣∂sKj(2
jr, 2j(sν + σ(s − sν)))

∣∣ ∣∣bj,ν(s)|ds.

We now argue as before, but use Proposition 3.1 to estimate ∂sKj and we
obtain for j ≤ −Lν

∫

In\J∗

ν

∣∣Sj,n,ibj,ν(r)
∣∣dr

.

∫ ∣∣bj,ν(s)|ds 2j+Lν2n(d−1)
∑

(±,±)

sup
a

∫
2jdWj(±2jr ± 2ja)

1 + 2(j+n)(d−1)
dr

.

∫ ∣∣bj,ν(s)|ds 2j+Lν
∑

(±,±)

sup
a

∫
2jWj(±2jr ± 2ja)dr

. B(0)2j+Lν‖bj,ν‖L1(ds)(7.7)

We can sum the terms (7.6) and (7.7) in j and obtain

∑

j

∫

In\J∗

ν

∣∣Sj,n,ibj,ν(r)
∣∣dr

. B(ε)
∑

j

min{2j+Lν , 2−(j+Lν)ε}
∥∥bj,ν

∥∥
L1(ds)

. B(ε)
∥∥~bν

∥∥
L1(ℓ2,ds)

.

Now we sum in ν and get the required L1(µd) bound off Ω. The expression
(7.5) is thus dominated by

λ−1B(ε)
∑

ν

2n(d−1)
∥∥~bν

∥∥
L1(ℓ2,ds)

. λ−1B(ε)
∑

ν

|Jν |2n(d−1) . λ−1B(ε)2n(d−1)

∫

In

|~h(s)|ℓ2ds

. λ−1B(ε)

∫

In

|~h(s)|ℓ2sd−1ds

This bounds the expression (7.4) by CB(ε)λ−1‖~f‖L1(ℓ2,µd). Combining this
bound with (7.2) and (7.3) yields the desired weak type (1, 1) bound (7.1).

�



CHARACTERIZATIONS OF HANKEL MULTIPLIERS 25

8. Lp → L2 estimates

In this section we prove some sharp Lp → L2 bounds for Hankel multi-
pliers.

Theorem 8.1. Let d > 1.

(i) Suppose 1 < p < 2d
d+1 . Then m ∈ M

p,2
d if and only if

(8.1) sup
t>0

t
d( 1

p
− 1

2
)
( ∫ 2t

t
|m(ρ)|2dρ

ρ

)1/2
< ∞.

(ii) Let pd = 2d
d+1 . Then the operator T : f 7→ Bd[mBdf ] maps the Lorentz

space Lpd,1(µd) to L2(µd) if and only if (8.1) holds for p = pd.

Remark. It is easy to see that the condition (8.1) is equivalent to

(8.2) sup
t>0

t
d( 1

p
− 1

2
)‖φm(t·)‖2 < ∞

for some nontrivial, smooth φ with compact support in (0,∞).

Proof of Theorem 8.1. We first prove (i). The necessity of the condition has
already been established in §4. For the proof of the sufficiency let T j be as
in (5.4). We then show the estimate

(8.3)
∥∥T jf

∥∥
L2(µd)

. Aj(p, 2)‖f‖Lp(µd)

where Aj(p, 2) = 2
jd( 1

p
− 1

2
)‖ϕm(2j·)‖2. Note that by Plancherel’s theorem

and the argument of Lemma 2.4 the condition supj Aj(p, 2) < ∞ is equiva-
lent with (8.1) (and also with (8.2)). Now,

∥∥T jf
∥∥

L2(µd)
=

( ∫ [ ∫
2jdKj(2

jr, 2js)f(s)sd−1ds
]2

rd−1dr
)1/2

= 2−jd/2
( ∫ [ ∫

Kj(r, s)f(2−js)sd−1ds
]2

rd−1dr
)1/2

. 2−jd/2
∑

(±,±)

∫ ∞

0
|f(2−js)| sd−1

(1 + s)
d−1
2

( ∫ ∞

0

∣∣∣
Wj(±r ± s)

(1 + r)
d−1
2

∣∣∣
2
rd−1dr

)1/2

where for the last bound we used Minkowski’s inequality and the kernel
estimate from Proposition 3.1. The last expression is controlled by

2−jd/2‖κj‖2

∫
|f(2−js)| sd−1

(1 + s)
d−1
2

ds(8.4)

≤ 2−jd/2‖κj‖2

( ∫
|f(2−js)|psd−1ds

)1/p( ∫
sd−1

(1 + s)
d−1
2

p′
ds

)1/p′
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and the second integral in the last line is finite for p < 2d
d+1 . Changing

variables we obtain
∥∥T jf

∥∥
L2(µd)

. 2jd(1/p−1/2)‖κj‖2‖f‖Lp(µd).

We now use orthogonality and Littlewood-Paley theory, writing Ljf =
Bd[χ(2−j·)Bdf ] and T j = LjT

jLj to get

‖Tf‖L2(µd) .
( ∑

j

‖T jLjf‖2
L2(µd)

)1/2

. sup
j

2jd(1/p−1/2)‖κj‖2

( ∑

k

‖Lkf‖2
Lp(µd)

)1/2

and the argument is concluded by observing that for 1 < p ≤ 2

(8.5)
( ∑

k

‖Lkf‖2
Lp(µd)

)1/2
≤

∥∥∥
( ∑

k

|Lkf |2
)1/2∥∥∥

Lp(µd)
≤ Cp‖f‖Lp(µd).

The proof of (ii) is largely analogous. We may assume that f is the
characteristic function of a measurable set E. The difference is the estimate
(8.4). We now observe that the function ωd(s) = (1 + s)−

d−1
2 belongs to the

space Lp′d,∞(µd) and by the duality between Lpd,1 and Lp′d,∞ we use instead
∫

|χE(2−js)| sd−1

(1 + s)
d−1
2

ds .
∥∥χE(2−j ·)

∥∥
Lpd,1(µd)

∥∥ωd

∥∥
L

p′
d

,∞
(µd)

which is . [2jdµd(E)]1/p. The subsequent Littlewood-Paley argument is the
same; we use f = χE in (8.5). �

Sharpness. The restricted strong type (pd, 2)-estimate is sharp, as the
Lorentz space Lpd,1 cannot be replaced by Lpd,s for s > 1. To see this
let mN (ρ) =

√
Nχ[1,1+cN−1] so that the condition (8.1) is satisfied uniformly

in N . Let fN (s) = s−(d+1)/2e−isχ[1,N ](s). Then one computes that

‖fN‖Lpd,s(µd) . (log N)1/s

and using the asymptotic expansion (2.1) one computes that

BdfN (ρ) = c

∫ N

1
ei(ρ−1)s ds

s
+ O(1)

for ρ near 1 (observe that the corresponding integral with phase −(ρ + 1)s
is bounded near ρ = 1, by an integration by parts). Thus |BdfN (ρ)| & log N
for |ρ − 1| ≤ cN−1 (if c is sufficiently small). Consequently

‖Bd[mNBdfN ]‖L2(µd) ≈ ‖mNBdfN‖2 & log N

which implies the assertion.
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Analogue for radial Fourier multipliers. We also note that an analogue of
Theorem (8.1) holds for radial Fourier multipliers acting on general Lp(Rd)
functions, namely there is the “folk” result

Observation 8.2. Suppose that 1 < p ≤ 2(d+1)
d+3 . Then the operator f 7→

F−1[m(| · |)f̂ ] extends to a bounded operator from Lp(Rd) to L2(Rd) if and
only if (8.1) holds.

Proof. The necessity has been observed in §4. If mt is supported in {ξ : t ≤
|ξ| ≤ 2t} then it follows by a well known argument of Fefferman [11] from
the Stein-Tomas restriction theorem ([30], ch.IX-2) that

‖F−1[mt(| · |)f̂ ]‖2 .
( ∫ 2t

t
|mt(r)|2

∫

Sd−1

|f̂(rξ′)|2dσ(ξ′)rd−1dr
)1/2

.
( ∫ 2t

t
|mt(r)|2‖ 1

rd f( ·
r )‖2

pr
d−1dr

) 1
2

= ‖f‖p

( ∫ 2t

t
|mt(r)|2r2( d

p
− d

2
) dr

r

) 1
2
.

For global multipliers the result follows now by Littlewood-Paley theory
exactly as in the proof of Theorem 8.1. �

We note that the restriction p ≤ 2(d+1)
d+3 for the result on general Lp

functions is optimal as follows from the usual Knapp counterexamples for
the restriction theorem.

9. Conclusion of the proof

In order to finish the proof of Theorem 1.2 it just remains to establish
the Lp(µd) → Lq(µd) estimates in Propositions 5.2 and 5.3 for p < q < 2.
The appropriate Lp,σ(µd) → Lq,σ(µd) follow then by the real interpolation
method, if we take into account the inclusion (5.18).

The interpolations follow results on bilinear interpolation with the com-
plex methods (i.e. in disguise versions of Stein’s interpolation theorem for
analytic families), see Theorems 4.4.1 and 4.4.2 in [2]. Using the first (and
more elementary) of these results we interpolate the inequalities

∥∥Ej,mf‖Lp(µd) . min{2−mε, 2m(d−1)}‖κj‖L1((1+|x|)εdx)‖f‖Lp(µd),∥∥Ej,mf‖L2(µd) . 2jd(1/p−1/2)‖κj‖L2‖f‖Lp(µd),
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where the first bound has been already been established in §7 and the second
is immediate from (8.3). Similarly for the singular integrals we interpolate

∥∥∥
( ∑

j

|Sj,n,ifj |2
)1/2∥∥∥

Lp(µd)
. sup

j
‖κj‖L1((1+|x|)εdx)

∥∥∥
( ∑

j

|fj |2
)1/2∥∥∥

Lp(µd)
,

∥∥∥
( ∑

j

|Sj,n,ifj |2
)1/2∥∥∥

L2(µd)
. sup

j
2

jd( 1
p
− 1

2
)‖κj‖2

∥∥∥
( ∑

j

|fj|2
)1/2∥∥∥

Lp(µd)
,

where again the first inequality has been proved in §7 and the second follows
from (8.3) and Minkowski’s inequality. In order to obtain the interpolated
Lp(µd) → Lq(µd) statements we use Lemma 2.5, and Theorem 4.4.2 in
[2] (which involves the [·, ·]ϑ functor on one of the entries). The proof is
complete. �

We remark that for the interpolation of the singular operators one could
have also based the proof on the more elementary Theorem 4.4.1 in [2] which
only involves the [·, ·]ϑ method; one then has to use the fact that the space
of Lp(µd) functions f for which Bdf has compact support in (0,∞) is dense
in Lp(µd), see [34]. Thus one can reduce matters to uniform estimates for
compactly supported multipliers and apply the interpolation result on the
spaces LFo(p, a, b) mentioned in the remark following Lemma 2.5.

10. Miscellanea

Proof of Corollary 1.5. The Lq((1+|r|)(d−1)(1−q/2)dr) norm of a function
κ is dominated using Hölder’s inequality by

( ∞∑

j=0

‖κ‖q
Lq(Ij)

2
j(d−1)( 1

q
− 1

2
)q

)1/q
.

( ∞∑

j=0

‖κ‖q
L2(Ij)

2
jd( 1

q
− 1

2
)q

)1/q
.

This is applied to κ = F−1[φm(t·)] and the result follows from the definition
of the Besov space. �

Proof of Corollary 1.4. This is an immediate consequence of theorem 1.2
and the interpolation formula of Lemma 2.5, with varying a, b (we set ai =
(di − 1)(1/qi − 1/2) and bi = 1/pi − 1/qi for i = 0, 1). �

Real interpolation. We can also prove some interpolation results using
the real method, in view of the nature of our conditions these are limited to
the Kϑ,∞ method with a number of restrictions (see [2] for general references
about real interpolation).
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Define M
p,q,σ
d as the space of all locally square integrable functions m on

R+ for which Tm extends to a bounded operator from Lp(µd) to Lq,σ(µd);
the norm is given by the operator norm of Tm. Thus M

p,q
d = M

p,q,q
d .

Theorem 1.1 is used to prove that for fixed d the weak type multiplier
spaces M

p,p
d,∞, 1 < p < 2d/(d + 1), are stable under real interpolation, with

respect to the Kϑ,∞ method.

Corollary 10.1. Suppose 1 < d < ∞, 1 < pi < 2d
d+1 , pi ≤ qi ≤ 2, for

i = 0, 1, moreover p0 6= p1, p−1
0 − q−1

0 = p−1
1 − q−1

1 . Then

(10.1) [Mp0,q0,σ0

d , Mp1,q1,σ1

d ]ϑ,∞ = M
p,q,∞
d ,

for (1/p, 1/q) = (1 − ϑ)(1/p0, 1/q0) + ϑ(1/p1, 1/q1) with 0 < ϑ < 1.

Proof of Corollary 10.1. We first observe that for a compatible pair of Ba-
nach spaces A0, A1 we have the formula

(10.2) [ℓ∞b (A0), ℓ
∞
b (A1)]ϑ,∞ = ℓ∞b ([A0, A1]ϑ,∞)

This follows quickly from the definition of the Kϑ,∞ method (and inter-
changing two suprema).

We now set w(r) = (1 + |r|)−(d−1)/2, dν(r) = (1 + |r|)d−1, and let
Lq,σ(w, dν) be the space of functions f for which fw belongs to Lorentz
space Lq,σ(dν) (and the norm is given by ‖fw‖Lq,σ(dν) where we work with
a suitable norm on the Lorentz space). The standard interpolation for-
mulas for Lorentz spaces apply and by (10.2) we have for q0 6= q1 and
1/q = (1 − ϑ)/q0 + ϑ/q1,

[ℓ∞b (Lq0,σ0(w, dν)), ℓ∞b (Lq1,σ1(w, dν))]ϑ,∞ = ℓ∞b (Lq,∞(w, dν)).

Now let LFq,σ
b (w, dν) be the space of all m which are square integrable over

every compact subinterval of (0,∞) and satisfy the condition

sup
t>0

tb
∥∥F−1

R
[φm(t·)]

∥∥
Lq,σ(w,dν)

< ∞.

Then the arguments in the proof of Lemma 2.5 show that the maps A, B

defined in (2.19), (2.20) can be used to show that LFq,σ
b (w, dν) is a retract

of ℓ∞b (Lq,σ(w, dν)). One deduces quickly that for q0 6= q1

[LFq0,σ0

b (w, dν), LFq1,σ1

b (w, dν)]ϑ,∞ = LFq,∞
b (w, dν)

and the asserted result follows from Theorem 1.2 if we apply the last formula
to the spaces M

p,q,σ
d with fixed d and fixed b = 1/p − 1/q. �

Remarks on compactly supported multipliers. The proofs show that
for multipliers which are compactly supported away from the origin the
result of Theorem 1.2 can be sharpened.
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Theorem 10.2. Let m ∈ L2(R+) be compactly supported in (0,∞). Suppose
1 < d < ∞, 1 < p < 2d

d+1 , p ≤ q < 2 and 1 ≤ σ ≤ ∞. Then the following
statements are equivalent.

(i) Tm maps Lp,σ(µd) boundedly to Lq,σ(µd).

(ii) Tm maps Lp,1(µd) boundedly to Lq,σ(µd).

(iii) ‖Bd[m]‖Lq,σ(µd) < ∞.

(iv)
∥∥(1 + | · |)− d−1

2 F−1
R

[m]
∥∥

Lq,σ((1+|x|)d−1dx)
< ∞.

A similar statement can be formulated for the analogue of Theorem 1.1
(again for m supported in (1/2, 2)). In particular for the case σ = ∞ we
see that then the restricted weak type (p, p) inequality, the weak type (p, p)
inequality and the stronger Lp,∞

rad → Lp,∞
rad bound are all equivalent in the

range 1 < p < 2d
d+1 . We note that for the case of Bochner-Riesz multipli-

ers such endpoint Lp,∞
rad bounds had been obtained by Colzani, Travaglini

and Vignati [9], extending earlier weak type endpoint bounds by Chanillo
and Muckenhoupt [6]. The result for Bochner-Riesz means follows from the
above theorem (after separately dealing with the irrelevant part of the mul-
tiplier near 0). This phenomenon has no analogue for Fourier multipliers on
R

d since Lp,∞ → Lp,∞ boundedness for translation invariant operators on
R

d already implies Lp → Lp boundedness ([8], [28]).

The proof of Theorem 10.2 is essentially the same as the proof of The-
orem 1.2, but more elementary since only a finite number of dyadic scales
on the multiplier side are involved hence no Littlewood-Paley theory and
singular integral estimates are needed. The difference (and improvement) in
condition (i), and the extended range of σ come from Proposition 5.1 which
involves only one dyadic scale and the space Lp,∞(µd) on the right hand side
of (5.10).

11. Open problems

11.1. Radial Fourier multipliers. Let K be a radial convolution kernel on
R

d, d ≥ 2.

Question: Is there a p > 1 for which the condition (1.1) (with σ = p) implies
that the convolution operator f 7→ K ∗ f is bounded on Lp(Rd)?

The local version of this is open as well:
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Question: Suppose that K is radial and K̂ is compactly supported in R
d\{0}.

Is there a p > 1 for which the condition K ∈ Lp(Rd) implies that the
convolution operator f 7→ K ∗ f is bounded on Lp(Rd)?

It is known (cf. [22]) that under a slightly weaker condition than (1.1),
namely the finiteness of supt>0 ‖Φ ∗ Kt‖Lp((1+|x|)ε) for some ε > 0 implies
Lp boundedness for certain p > 1. The condition on p is that for the dual
exponent p′ the local smoothing problem for the wave equation in R

d+1 can
be solved up to endpoint estimates. Wolff [35] proved such estimates for
d = 2 and large p′; for corresponding results in higher dimensions see [20],
and for the currently known ranges of Wolff’s inequality see [13].

It is likely that in order to prove or come closer to a characterization
one needs to prove an endpoint version of Wolff’s inequality. The currently
known method of proof (by induction on scales) fails to give such sharp
bounds.

11.2. Localized Besov conditions. Short of a characterization one can ask
whether for some p > 1 the Lp condition of Corollary 1.5

sup
t>0

‖ϕm(t·)‖B2

d( 1
p−

1
2 ),p

< ∞

implies that m(| · |) is a multiplier of FLp(Rd). Again the analogous question
for m supported in (1/2, 2) is also open. A result which comes close is
in [27]. There a scale of spaces Rp

α,s is introduced with Bp
α,1 ⊂ Rp

α,s ⊂
Bp

α,p for 1 ≤ s ≤ p and Lp(Rd) boundedness is proved under the condition

supt>0 ‖ϕm(t·)‖R2
d(1/p−1/2),p

< ∞, for 1 < p ≤ 2(d+1)
d+3 .

11.3. Localized multiplier conditions. Does the analogue of Corollary 1.3
hold for radial Fourier multipliers, acting on general functions in Lp(Rd),
some p > 1?

11.4. Hankel multipliers in the complementary range. No nontrivial charac-
terization just in terms of the convolution kernel seems to be known (and
perhaps may not be expected) for the range 2d

d+1 ≤ p < 2.

Appendix A. On Zafran’s result

Recall that for a compatible couple of Banach spaces (A0, A1) a space
X ⊂ A0 +A1 is called an interpolation space for (A0, A1) if there ia constant
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C so that for every T : A0 + A1 → A0 + A1 which is bounded on A0 and
bounded on A1 we have

(A.1) ‖T‖X→X ≤ C max
{
‖T‖A0→A0 , ‖T‖A1→A1

}
.

Zafran [36] showed that the space Mp(R) is not an interpolation space for
the pair M1(R) (the Fourier transforms of bounded Borel measures) and
M2(R) = L∞(R). His arguments in conjunction with Bourgain’s theorem
on Λ(p) sets can be extended to show

Proposition A.1. Let 1 ≤ p0 < p < p1 ≤ 2. Then Mp(R) is not an
interpolation space between Mp0(R) and Mp1(R).

We start quoting a standard result on random Fourier series due to Salem
and Zygmund ([24], ch. IV); it can be proved from the distribution inequal-
ity for Rademacher expansions and Bernstein’s inequality for trigonometric
polynomials. Let rk be the sequence of Rademacher functions and define

FR(t, θ) =

R∑

k=1

ake
ikθrk(t).

Then there is a constant C so that for all integers R ≥ 2, and for 1 ≤ ρ < ∞

(A.2)
( ∫ 1

0
sup

θ
|FR(t, θ)|ρdt

)1/ρ
≤ C

√
ρ log R(

∑

k

|ak|2)1/2.

By the standard averaging argument the log R term may be dropped if the
supremum in θ is replaced by an Lρ norm.

The proof of Proposition A.1 relies on a deep result by Bourgain [3]
(proved earlier by Rudin [23] for p′ an even integer).

Bourgain’s theorem. Let 1 < p ≤ 2, p′ = p/(p − 1). There is a constant
Cp with the following property. For each integer N ≥ 2 there exists a set

SN of cardinality N which consists of integers in [0, Np′/2] so that

(A.3)
( ∫ 2π

0

∣∣∣
∑

k∈SN

ake
ikx

∣∣∣
p′

dx
)1/p′

≤ Cp

( ∑

k

|ak|2
)1/2

.

In what follows we shall always fix p and the associated family of sets SN

for which (A.3) holds. A consequence of (A.3) is that

(A.4)
∥∥∥

∑

k∈SN

bkη(· − k)
∥∥∥

Mp(R)
≤ C(p) sup

k
|bk|

where η is the Fejér multiplier

η(ξ) =

{
1 − |ξ|, |ξ| ≤ 1,

0, |ξ| ≤ 1.
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To see (A.4) we first note that (A.3) implies that the sequence {bkχSN
(k)}k∈Z

defines a multiplier in Mp′

2 (Z), and by duality a multiplier in M2
p (Z), with

norms bounded by C‖b‖ℓ∞ . By Hölder’s inequality (using the compactness
of T) it also follows that this sequence belongs to Mp(Z), since p ≤ 2. Now
Jodeit’s extension result [19] (see also [12]) for multipliers in Mp(Z) says

(A.5)
∥∥∑

k

mkη(· − k)
∥∥

Mp(R)
.

∥∥{mk}
∥∥

Mp(Z)
, 1 ≤ p ≤ q ≤ ∞.

Inequality (A.4) follows.

A third ingredient will be a sequence of multipliers hN which belong to
all M q classes and satisfy the lower and upper bounds

(A.6) ‖hN‖Mq(R) ≈ N
1
q
− 1

2 , for 1 ≤ q ≤ 2.

There are many examples of such families, we choose

hN (ξ) = χ(ξ)eiN |ξ|2

where χ is a smooth function supported in (1/2, 2) which is equal to one
on [3/4, 5/4]. To see that (A.6) holds true we examine the kernel KN =

F−1[hN ]. By stationary phase arguments we see that |KN (x)| . N−1/2 for
N/4 ≤ x ≤ 4N and |KN (x)| ≥ cN−1/2 for 3N/2 ≤ x ≤ 5N/2; moreover
by integration by parts |KN (x)| ≤ CLx−L for x ≥ 4N and |KN (x)| ≤
CLN−L for x < N/4. This shows that ‖KN‖Lq ≥ cN1/q−1/2 and since hN

has compact support this implies the lower bound in (A.6). The kernel
calculation also implies the upper bound for q = 1 and interpolation with
the trivial L2 bound yields (A.6).

Proof of Proposition A.1. Let N be a large integer, R ≫ N and let SN be
a set in [0, R] so that (A.4) holds for q = p′ (by Bourgain’s theorem we may

choose R ≈ Np′/2). Essentially following Zafran we then consider the rank
one operators LN : M q → M q defined by

LN (m) = vN (m)hN , where vN (m) =
1

N

∑

k∈SN

ρk

∫
m(ξ)η(ξ − k)dξ.

Here we assume that ρk ∈ {1,−1} are chosen so that

(A.7) sup
x

∣∣∣N−1
∑

k∈SN

ρke
ikx

∣∣∣ ≤ CN−1/2 log R;

this can be achieved by (A.2).

We shall show that
(A.8)

‖LN‖Mq→Mq ≤ C min{N1/q−1/2, N−1+1/qR1/q′
√

log R}, 1 ≤ q ≤ 2;
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moreover if p is as in (A.4) then

(A.9) ‖LN‖Mp→Mp & N1/p−1/2.

We first show that the validity of (A.8) and (A.9) implies the asser-
tion of the Proposition. Namely if Mp(R) were an interpolation space of
(Mp0(R), Mp1(R)), with p0 < p < p1, then

(A.10) ‖LN‖Mp→Mp ≤ C max {‖LN‖Mp0→Mp0 , ‖LN‖Mp1→Mp1}.
We use the first bound in (A.8) for q = p1 and the second one for q = p0.
Thus by (A.10) and (A.9)

N1/p−1/2 . C max{R1/p′0
√

log RN−1/p′0 , N1/p1−1/2}.

By Bourgain’s theorem we may choose N large and R ≈ Np′/2. Since p < p1,

the last displayed inequality implies 1/p − 1/2 ≤ (p′

2 − 1)/p′0 which solving
for p is equivalent to p ≤ p0, a contradiction.

Proof of (A.8). We set ωN := N−1
∑

k∈SN
ρkF−1[η(· − k)]. Since the Fejér

kernel F−1[η] belongs to L1 ∩ L∞ we observe that (A.7) ‖F−1[η]‖Lr < ∞

(A.11) ‖ωN‖Lr(R) . rN−1/2 log R, 1 ≤ r < ∞.

In view of (A.6) the inequality (A.8) follows from

(A.12) |vN (m)| . min{1, N−1/2R1/q′
√

log R} ‖m‖Mq , 1 ≤ q ≤ 2.

The first bound in (A.12) is obvious since |vN (m)| ≤ ‖m‖∞. The second
follows from Plancherel’s theorem. To see this let ζR(ξ) = ζ0(ξ/R) where ζ0

is compactly supported with the property that ζ0(ξ) = 1 for |ξ| ≤ 2. Then
by (A.11)

|vN (m)| = c
∣∣∣
∫

F−1[mζR](x)ωN (x)dx
∣∣∣

≤ ‖ωN‖q′‖F−1[mζR]‖q ≤ ‖ωN‖q′‖m‖Mq‖F−1[ζR]‖q

and the second bound in (A.12) follows if we observe that ‖F−1[ζR]‖q =

O(R1/q′). Thus (A.8) is proved.

Proof of (A.9). Here we use (A.4) (which was a consequence of the crucial
Λ(p′) estimate for the set SN ). We apply LN to ω̂N and obtain

‖LN‖Mp→Mp ≥ ‖LN (ω̂N )‖Mp

‖ω̂N‖Mp
=

‖ω̂N‖2
2‖hN‖Mp

‖ω̂N‖Mp
& ‖hN‖Mp

where we have used that ‖ω̂N‖2
2 ≈ N−1 and N‖ω̂N‖Mp . 1, by (A.4). Thus

(A.9) follows from (A.6). �
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