MAXIMAL FUNCTIONS ASSOCIATED WITH FOURIER
MULTIPLIERS OF MIKHLIN-HORMANDER TYPE
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ABSTRACT. We show that maximal operators formed by dilations of
Mikhlin-Hérmander multipliers are typically not bounded on LP(R%).
We also give rather weak conditions in terms of the decay of such mul-
tipliers under which LP boundedness of the maximal operators holds.

1. INTRODUCTION

For a bounded Fourier multiplier m on R? and a Schwartz function f in
S(R?) define the maximal function associated with m by

M f () = sup | F 7 m(t) ().

We are interested in the class of multipliers that satisfy the estimates of
the standard Mikhlin-Hormander multiplier theorem

(1.1) 0“m(§)] < Cal¢]™*

for all (or sufficiently large) multiindices a. More precisely, let L’ be the
standard Bessel-potential (or Sobolev) space with norm

1Fllzy = 112 = 272 f s

here we include the case r = 1. Let ¢ be a smooth function supported in
{€:1/2 < |€] < 2} which is nonvanishing on {¢ : 1/v/2 < |¢| < v/2}. Then
one imposes conditions on m of the form

(1.2) sup [ ¢m (2% < oc.
keZ

The function m is a Fourier multiplier on all P, 1 < p < oo if (1.2)
holds for v > d/r, with 1 < r < 2 and the condition for » = 2 is the
least restrictive one (see [7]). Concerning the maximal operator Dappa and
Trebels [4] showed using Calderén-Zygmund theory that if M,, is a priori
bounded on some L9, ¢ > 1 and if (1.2) holds for » = 1, v > d, then M,,
is of weak type (1,1) and thus bounded on LP for 1 < p < ¢. Using square
function estimates, the L? boundedness of M,, has been shown in [2], [4]
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under certain additional decay assumptions (cf. also [9]). For instance, it
follows from [4] that

1/2
(1.3) [ Ml < Co( 3 lom@)1%) 151
keZ
with X = L for 1 < p <2, and with X = L2 , for 2 < p < 0.

d/p+e d/2+¢
Further results in terms of weaker differentiability assumptions are in [2], [4],

especially for classes of radial multipliers.A Moreover, if m is homogeneous of
degree 0 then trivially | M, f| = |F~1[mf]; this observation can be used to
build more general classes of symbols without decay assumptions for which
M,,, is LP bounded.

A problem left open in [4] is whether the Mikhlin-Hérmander type as-
sumption in (1.1) or (1.2) alone is sufficient to prove boundedness of the
maximal operator M,,. We show here that some additional assumption is
needed; indeed this applies already to the dyadic maximal function associ-
ated with m, defined by
(1.4) My f = sup [F~ [m(2) f]],

keZ
which of course is dominated by M,, f.

Example. Let {v(l)};2, be a positive increasing and unbounded sequence.
Then there is a Fourier multiplier m satisfying

v([k[)
(1.5) sup |02 (¢(&)m(2%¢))| < Co——e—, k€7,
P 1% N E=
with C, < 0o for all multiindices o, so that the associated dyadic mazximal
operator M, is unbounded on LP(R?) for 1 < p < oc.

This counterexample will be explicitly constructed in §2. Taking v(l) =
V/1og(l +2) we see that there exists m satisfying (1.1), so that M,,, and
hence M,,, are unbounded on LP(R%) for 1 < p < co. In view of these
examples it is not unexpected that unboundedness of M,, holds in fact for
the typical multiplier satisfying (1.1), i.e. on a residual set in the sense of
Baire category. In order to formulate a result let & be the space of functions
m € C®(R?\ {0}) satisfying (1.1) with C, < oo for all multiindices a. It
is easy to see that & is a Fréchet-space with the topology given by the
countable family of norms
(1.6) Imll () = sup sup [¢]*ogm(€)].

|| <j E€RE
Let Sy denote the space of Schwartz functions whose Fourier transform

have compact support in R?\ {0} and let & be the space of all m € & for
which

sup{[| M. fllp : f € So, I fllp < 1}
is finite for some p € (1,00). Thus m € &M if and only if the linear operator
f = {F Y m(t)f]}+>0 extends to a bounded operator from LP to LP(L>)



MAXIMAL FUNCTIONS AND MIKHLIN-HORMANDER MULTIPLIERS 3

for some p € (1,00); in other words m € &M if and only if M,, extends to
a bounded operator on LP(R?), for some p € (1,00).

Theorem 1.1. &M is of first category in S, in the sense of Baire.

In terms of positive results we note that there is a significant gap bet-
ween the known conditions in (1.3) and the weak decay (1.5). Assuming
H¢m(2k')HLé+e = O(|k|~%), then (1.3) yields L? boundedness for 1 < p < 0o
only when o > 1/2. We shall see that this result remains in fact valid under
the weaker assumption

(L.7) lom(@ gy, < (og(lk| +2))~ .

In what follows we shall mainly aim for minimal decay but will also try to
formulate reasonable smoothness assumptions.

To formulate a general result we recall the definition of the nonincreasing
rearrangement of a sequence w, defined for ¢t > 0 by

w*(t) = sup {\ > 0: card({k : |w(k)| > A}) > t};

note that w*(0) = supy, |w(k)| and w* is constant on the intervals [n,n + 1),
n=0,1,2,....

Theorem 1.2. Let 1 < p < oo, 1/p+1/p) =1 and let w : Z — [0,00)
satisfy

(1.8) W (0)+ “*l(l) < 0.
=1

(i) Suppose that for some o > d/p we have
o) ([ 17 om0 whvar)” <wlr). kez,
Rd

then My, is bounded on LP(R?).
(it) If (1.9) holds for p' =1 then M,, maps L> to BMO.
(iii) If for some ¢ > 0

(1.10) sgpu + 2| F em(25)](2)] < w(k), k€ Z.

Then M, is of weak type (1,1), and M, maps H* to L.
By the Hausdorff-Young inequality for p < 2 one deduces

Corollary 1.3. Suppose 1 < p < oo, r = min{p, 2}, and o > d/r. Suppose
that

(1.11) lpm (28|, <w(k), ke Z,
where w satisfies (1.8). Then M, is bounded on LP(R?).

In particular we conclude that the condition

(112) (S lom@ )z, )" < o0

keZ



4 MICHAEL CHRIST, LOUKAS GRAFAKOS, PETR HONZIK, ANDREAS SEEGER

with «, 7 as in the corollary, implies LP boundedness. Indeed (1.12) implies
that w*(1) = O(17'/%) as | — oo. Of course LP boundedness also holds if
w*(1) < (log(2 +1))~17¢ etc. which covers condition (1.7).

Finally we state a more elementary but closely related result about max-
imal functions for a finite number of Hormander-Mikhlin type multipliers
m,,, with no decay assumptions and not necessarily generated by dilating a
single multiplier.

Theorem 1.4. Let 1 < p < oo, 1/p+1/p' = 1 and let {my,},>1 be a
sequence of multipliers and define a maximal operator by

M, f(z) = sup ‘]—'_l[m,,f](:n)‘.
1<v<n

Suppose that

, Y
(1.13) sup sup (/ |]~'_1[¢m,,(2k-)]|p (14 |z])* dm) g <A
v keZ NJRA
for some o > d/p. Then for f € LP(R?)
(1.14) [ fllp < CpAlog(n + )| f]p-

Again if the above assumptions hold for p = 1 then a weak type (1,1)
inequality and an H' — L' inequality hold, and if p = oo we have an
L*>® — BMO inequality, all with constant O(log(n + 1)).

Structure of the paper. In §2 we shall provide the above mentioned exam-
ples for unboundedness and prove Theorem 1.1. A tiling lemma for finite
sets of integers and other preliminaries needed in the proof of Theorem 1.2
are provided in §3. §4 contains the main relevant estimates for multipliers
supported in a finite union of annuli. In §5 we conclude the proof of Theo-
rem 1.2 and in §6 we give the proof of Theorem 1.4. Finally we state some
extensions and open problems.

2. UNBOUNDEDNESS OF THE MAXIMAL OPERATOR

We shall explicitly construct an example satisfying (1.5) and then use our
example to prove Theorem 1.1.
Define S = {1, 1,4, —i} and let SV be the set of sequences of length N

on S. Enumerate the 4"V elements in SV by {s,{}iil. Let @ be a smooth
function supported in 3/4 < [¢] < 5/4, so that ®({) = 1 whenever 7/8 <
€] <9/8. We let

4N N

mn(©) =33 sa ()@ g)

k=1 j=1

which is supported in {¢: 1/2 < |¢] < 2V4"+N+11 and define m by

(2.1) mE) =Y N=H29(4N ymp (27 V8% ¢).
N=1
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One observes that the terms in this sum have disjoint supports and that m
satisfies condition (1.5).

Fix 1 < p < co. We will test the maximal operator M, on functions fx,
defined as follows. Pick a Schwartz function ¥ such that || V||, = 1 and so

that supp U is contained in the ball |¢| < 1/8. For 1< j < N define

N
gN(x) — Z e27rz'2J:z:1\I/(',1.)7
j=1

and set
Then gy (&) = Z;v:1 @(g — 2e1) and, by Littlewood-Paley theory,

lgnlly < e,NY2, 1< p< oo
Thus
lfnpllp < cp <00, 1< p<oo,

uniformly in N.
The main observation is

(2.3) H 1<:2]1\)[4N ‘f‘l[mN(2k-)g’fv]‘ Hp > CN.

Given (2.3) we quickly derive the asserted unboundedness of M,,,. Namely,
by the support properties of the m,, it follows that

ma (M OGN 2N ) =0 N #£n, 1<k< N4V

Thus, setting a, = n~'/2v(4"™), we obtain

My, fnp(z) > sup ‘ Zanf_l[mn(2k_”8n.)m](x)‘

1<k<N4N | —]
1 _NsN s e
> sup anN 2‘.7-" 1[mN(2k N8y T gN (278 )](az)‘
1<k<N4N
dansN
—axyN"2270  sup |F ma(25)an] 2V ).

1<k<N4N
Taking LP(R?%) norms and using (2.3) we conclude that
(2.4) 1M fpllp > CanN'? = Co(4Y).

By the assumed unboundedness of the increasing sequence v it follows that
M,, is not bounded on LP.

Proof of (2.3). For any complex number z the quantity sup.cg Re (cz)
is at least |z|/v/2. Thus for € R and 1 < j < N we may pick ¢;(z) € S
such that

(2.5) Re (¢;(2)e?™? "0 (z)) > [ (2)|/V2.
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We can find r, in {1,...,4"} such that

cj(z) = s4,(j), j=1,...,N.
Taking k = k, N we obtain

sup |f_1[mN(2k‘)g/1\V](x)‘

1<k<N4N
aN N N .
> Re [ 303 )@ V2V Yo B(E - Ve
I=1v=1 j=1

Since 1 < j < N, the supports of ®(2~N~v2Nkz£) and @(5 —2/e1) intersect
only when I = s, and j = v. In this case ®(2~Nv2Nreg) = H(277¢) is
equal to 1 on the support of (I\’(ﬁ — 27). Therefore we obtain from (2.5) the
pointwise estimate

sup |]:_1[mN(2k‘)§J\V] ($)|
1<k<N4N

N
>3 R ¢ (5. ()F B~ 2))(2)) > N|B(a)|/V2.

Taking LP norms ylelds (2.3). O

Proof of Theorem 1.1. The space & is a complete metric space and the
metric is given by

00
. Hml —mg”()
§ 277 ]

ml,m2 1+ Hml — m2||(j)

j=
where || - ”(j) is defined in (1.6).
Let fy, be as in (2.2) (with p = ') and for integers r,n, N, all > 2,
consider the set
S(r,n,N) ={m € & : | My fn | <n},
here ' = r/(r — 1), and the set

S(r,n) = m S(r,n, N).
N=2
We shall show that &(r,n) is closed in &, and nowhere dense. We also
observe that

(2.6) M ¢ D [j S(r,n);

thus &M is of first category. To see (2.6) assume that M,, is bounded on
LPo, for some pg > 1. By the theorem by Dappa and Trebels mentioned
before (¢f. Proposition 3.2 below) it follows that M, is bounded on LP

for 1 < p < po, in particular bounded on L™ for some integer r > 2. We



MAXIMAL FUNCTIONS AND MIKHLIN-HORMANDER MULTIPLIERS 7

note that fy,» € Sy is such that || fx,|l,» < C., independently of N. Thus
m € &(r,n) for sufficiently large n.

Next, in order to show that the sets &(r,n) are closed it suffices to show
that the sets &S(r,n, N) are closed for all N > 2. For integers I} < o
denote by S(l1,12) the class of Schwartz functions whose Fourier transform
is supported in the annulus {¢ : 271 < |¢] < 22+1}. We observe the
following inequality

1M fllp < COMmll @+ (X + 2 = LDl fllp, i f € S, la),

which (in view of the dependence on [, l3) can be obtained by standard
techniques, see e.g. [4] or [9]. Note that every fu, is in some class S(l1,[2)
with lo — I3 < N. Now, if m, € &(r,n, N) and lim, _, o d(m,, m) = 0 then

[ Mo [l < 0t | Mo, S [l < 0 C () fme = m [l @) L v [l

and since [|m — my||(g41) — 0 we see that m € &(r,n, N). Thus &(r,n, N)
is closed.

Finally we need to show that &(r,n) is nowhere dense in &; since this
set is closed we need to show that it does not contain any open balls. Now
if g € &(r,n) then consider the sequence g, = g + 27Ym where m is as in
(2.1). Clearly d(g,,g) — 0. However by (2.4) we have that g, ¢ S(r,n, N)
for sufficiently large N and thus g, ¢ &(r,n) for any r, n. Thus &(r,n) is
nowhere dense. U

3. PRELIMINARIES.

A tiling lemma. In §5 below we shall decompose the multiplier into pieces
with compact but large support. In order to effectively estimate the maximal
function associated to these pieces we shall use the following “tiling” lemma
for integers.

Lemma 3.1. Let N > 0 and let E be a set of integers of cardinality < 2N .
Then we can find a set B = {b;}icz of integers, such that

(i) the sets b; + E are pairwise disjoint,

(i1) b; € [idN 1 (i + 1)4AN 1Y), and

(iii) Z = U i (n + B).

Proof:  Clearly (iii) is an immediate consequence of (ii). We enumerate
the set E = {e,}2" .

We set by = 0, and construct b;, b_; for j > 0 by induction. Assume that
b; € [i4N+L (i +1)4VF1) has been constructed for —j < i < j so that the
sets b; + E are pairwise disjoint.

For v = 1,...,2" we denote by C} the subset of all integers cin [j4V+!, (j+
1)4N+1) with the property that e, + ¢ € Ug;ll_j(bi +E).

We shall verify

(3.1) card ( Uzil C’f,) < QNHL 4N+
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Given (3.1) we may simply take
bj € [N, (G + DAV \ (V2L €)

and by construction the sets bi_; + E,...,b; + E are disjoint.
In order to verify (3.1) observe that e, +c € [j4V ! +e,, (j+1)4" +e,)
if ¢ € CY. Thus

card(C}) = card ([j4N T +e,, (j + D4V +e,) N Ug;ll_j(bi + E)).

Since by the induction assumption b o —b; > 4V ifi > 15, i+2 < j—1,
this gives

card ([jANT! + e, (j + DAV +e,) NUIZT (b + {e})) <2

for all . This means card(C}) < 2card(E) < 2¥+! and thus the cardinality
of Uging is bounded by 2V 2N+ < 4N+1 45 claimed.

To finish the induction step we repeat this argument to construct b_;. For
v=1,...,2"Y we denote by C,” the subset of all integers ¢ in [—74NFL (1 —
§)4N 1) with the property that e, +c € ngl_j(bi + E). Again we verify (by
repeating the argument above) that the cardinality of UELCV_ T is < 4N+1
and then we may choose b_; € [—j4VT1 (1 — j)4N+1) so that b_; does not
belong to Ugil(}',,_j. Then by construction the sets b_; + E,...,b; + E are
disjoint. O

Weak type (1,1) and Hardy space estimates. For a countable set of
multipliers {m, },c7 consider the maximal function given by

Mf(x) = sup I F~ m, F1(z))].

We shall apply the following result on maximal functions which is based on
Calderén-Zygmund theory and essentially proved in [4]. In what follows H!
denotes the standard Hardy space.

Proposition 3.2. Suppose that for some positive € < 1

sup sup sup (1+ |z)*F¢|F " gm, (2°)](z)| < 4o
veZL k€Z zcRa
and suppose that M is bounded on L9 (for some q > 1) with operator
norm Ay. Then M is bounded from H' to L' with operator norm at most
Cy(Aoe™t + Ay); moreover M is of weak type (1,1) with the estimate
su% ameas({a: SRS (z)| > a}) < Cy(Aoe™ + A1
a>
Proof. We prove the weak-type (1,1) bound. Fix a > 0. We use the stan-
dard Calderén-Zygmund decomposition (see [11]) at level 3 = (2471 4;) " a.
Thus we decompose f = gg + bg where |gg| < 2453 and bg = > bs, where
bg g is supported on ) and has mean value 0. Moreover, if Q* denotes the
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2v/d-dilate of Q with same center, then the dilated cubes Q* have bounded
overlap and

Y meas(Q) < C(@)B7 flh < 2 C(d)Ara | f -
Q

Let K, ; = F[¢(277-)m,]. We argue similarly as in Lemma 1 of [4] to
verify the following vector-valued Hormander condition for maximal opera-
tors (see [13]):

(3.2) / sup ‘Ky7j(x —y) — K, j(z)|dx < Cue ' Ap.
|z[>2]y] j

v
Let IN(,,J = Ft¢m,(27-)] so that K, j(z) = 2jdl~(,,7j(2j:17). By assumption
we have the pointwise estimate
Ko j(@)] + VK, j(@)] S Ao(1+ |=]) "%,
uniformly in v and j. This quickly yields

/ sup
lz|>2ly| v

thus after summing in j we obtain (3.2). This inequality implies in the usual
way

Ky j(x—y) — Ky j(z)|de < Agmin{(27|y|) =%, 27 |y|};

meas{z ¢ UQ* : Mbs(z) > a/2} < Aoera™ | |1
For the contribution of the “good” function gz we obtain
meas{z : Mgp(r) > a/2} < 2% 1|Myg||2
(3.3) < 270794 |lgs|ld < 27a7A1(278)77 | £
<2417 f[h.

A combination of these estimates yields the weak-type (1,1) estimate.
Finally for the H! — L' bound we use the atomic decomposition of H'!
and it suffices to prove the estimate

1Mol S (Aoe™ + 4y)

for functions f¢ supported on a cube @ satisfying [ fodz = 0 and || fg|ec <
|Q|~!. If Q* denotes the expanded cube, then we get

5 1
1Mol S 1R 1Mfally S 1QI7 Al follg < A
Using the cancellation of the atom we see that (3.2) implies
19 foll 1 reavgey S Aoe™!
and combining the two estimates we get the asserted H! — L! estimate. O

Note that the hypothesis in the proposition is implied by

supsup|]¢my(2k-)HLé < Ayp.
veT kez te
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The result of Dappa and Trebels [4] mentioned in the introduction corre-
sponds to the special case where m,, = m(t,-) and {t,} is an enumeration
of the positive rational numbers.

4. RESULTS ON LP BOUNDEDNESS

In this section E will be a set of integers satisfying
(4.1) card(E) < 2V,
here N is a nonnegative integer.

Let ¢ € C° be supported in {¢ : 1/4 < [¢] < 4} and set ¥ = F~1[];
later we shall work with a specific ¢ satisfying (5.1).

Let y € C®(R%) so that y is radial and supported where Ry < |z| < Ry
with 1/2 < Ry < R; < 2; moreover assume that y is positive for Ry <
|z| < Ry and that >;°_  x(27'z) = 1 for @ # 0. Now set xo(z) = (1 —
> =0 X(27'z)) so that x is supported where |z| < 2. Let x;(z) = x(27'z)
for I > 0; then Y ;) x;(z) = 1.

For a function g define by &;¢ the L' dilate; i.e.

Gig(w) =t~ g(t™ ).
For a sequence H = {hy }rez of locally integrable functons we then consider
the operator

(4.2) TNH, £ =" 0ong[@  (aihi)] + f
keFE
and the maximal function

MEUH, f] = sup | TP H, £]).
t>0

~

In §5 we shall decompose F~![m(t-)f] in terms of operators of the form
(4.2).
The following LY bound is favorable when ¢ > N + (.

Proposition 4.1. Assuming (4.1) we have for q > 2
IMPHH, f]lly < Cq 4™ (14 0279 | H]|go (1)1 f -

Proof. In what follows we shall use the notation A < B to indicate an
inequality A < C'B where C' may only depend on d (and not on ¢ or other

parameters).
Define -
9k (&) = V(E)hexi(§)
and
(4.3) mh(&) =mh (&) = gra(27*);
keE
then

~

T2NH, f) = F - ml () f).
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Also note that

(4.4) 0s[m'(s6)] = Gra(s27¢)
keFE
where
(4.5) Ge(6) = D(ENE V) Xk (€) + xahw ()€, V)0 (€).

Now apply Lemma 3.1 for the set E, and let b; be as in Lemma 3.1 (ii).
By (iii) of Lemma 3.1 we may write
sup [F~'[m!(t-)f]] = sup sup sup |[F[m!(27%""s)f]|.
>0 |n|<4N+1 jEZ 1<s<2
Now one replaces the supremum in n and j by £¢ norms, takes the L norms,

then interchanges the order of summation and integration. This yields for
MEUH, f] = M, f the estimate

(4.6) HMmlfH <4(N+2) sup <ZH sup |f “hitng |H)

|n\S4N+1 1<s5<2

Thus it remains to verify that for |n| < 4V+!

47 (3 s 1 e s P [1) T 5 a+028 o

1<s<2

In what follows we may assume that n = 0 since the general case follows by
scaling.

To estimate the supremum in s it is standard to use the elementary in-
equality

Fep < i +a [ 1FEa0) T ([ 1 o))

which is obtained by applying the fundamental theorem of calculus to |F'|?
and Holder’s inequality.
Taking L? norms and applying Holder’s inequality twice yields

S s [ sl 25 S

JET

ca( [ Shole) ™ ([ Shmole)

(4.8)

where
Ijl»(s) =F! [ml(2_bjs-)f]
11(s) = F 105 (m!(27% ) F]
11t = Fml27% ) f].

Next, we interchange the j-summations and integrations in (4.8) and use
the imbedding of ¢2 into ¢¢. This yields
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(4.9)

(ZH sup |71 Sl

1<s<2

(LIS me st (SN o) )
+H(Z'”fl) 1.

JEZ

In order to estimate these terms we need the following estimates for vector
valued singular integrals.

Sublemma. For 2 < g < oo we have

@) (] F e A1) S a0+ 0l o7l

JEZ keE

and

@) [|[(S S F G 97) ) S e+ 021l o171

JET kEE

Sketch of Proof. By duality (4.10) for 2 < ¢ < oo is equivalent to

(4.12) H (> ‘ > F g7 £ ‘2) 1/2Hp

JEZ kEE
(S1sr)"],

for 1 <p <2 p =p/(p—1). For p =2 this (and in fact a slightly better)
bound follows from the essential disjointness of the supports of g;; and the
estimate

P+ D)7 g

l9k,illoc < Cllhklloc < ClIH |[g(L)-
For 1 < p < 2 the inequality (4.12) follows from the weak type bound

(4.13) meas({x : (J% ‘ I;f_l[gm@—bj—k.)fj]‘z) 2 > A})
(3Ze) ",

where in the interpolation we have to take into account the behavior of the
constants in the Marcinkiewicz interpolation theorem (see e.g. [6], p. 33).

<oA1 +0) MH [[goo (L1
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The weak type estimate follows by standard arguments in Calderén-
Zygmund theory from the inequality

[ (] (F e e -y

w|>2ly| 7 REE

- F g )@)[) e £ (4 D

which, since the sets {b; + E'};cz are disjoint, is quickly derived from the
inequalities

(4.14) / I N R e R

2M 1y if 2My| <1
Slhelli x {1 if 1 <2Mjy| <220,
@Myt it 2My > 2%
Summing in M yields a blowup of order O(1 + [). The bound (4.14) is
straightforward given the localization of x; and the decay of the Schwartz-

function W. This finishes the proof of (4.10).
In order to verify (4.11) we note from (4.5) that

d
F@) =1y [ 0%~ puawhnw)dy
=1

d
v ) [©0. ¥ - i)y
i=1

Here the second term has the same quantitative properties as F [gk.1] while

the first has similar estimates as 2/ F~![gx]. Thus the above arguments show
(4.11) as well. O

Proof of Proposition 4.1, cont. For fixed s we may perform the scaling
¢ — s7¢ in (4.9); this puts us in the position to apply the sublemma. We
then see that the right hand side of (4.9) can be estimated by a constant
times

a1+ Dl Hlgmo 1) (1 +279)]| £l
which implies the desired bound (4.7). 0

Corollary 4.2. Assuming (4.1) we have
IMPH, flllparo < CN + D+ DI Hllge 21y | £l -

Proof. Let Q be a cube in R? with center zg and let @Q* be the 2v/d-dilate
with same center. By the definition of BMO and Holder’s inequality the
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assertion follows from
(4.15)
1

1 1
(@/@\ME,I[HJCXQ*”Nde) A < (N + 1)1+ D H|lgoe ()| £l e

and, with m! as in (4.3),

(4.16) supsup / | F ()@ — ) — FLml ()] (zq — v)|dy
zeQ t>0 JRIA\Q*
S+ DIH | goo(zy 1 f Nl zoe

The left hand side of (4.15) is bounded by the L™*! operator norm of
MELH,-) times |Q YN+ || fxo«|| n11 and (4.15) follows from Proposition
4.1. Inequality (4.16) is deduced from the estimates in the Sublemma. O

Proposition 4.3. Suppose that (4.1) holds. Then for 1 < p < oo, 1/p +
1/p' =1,

IMPHE, flllp < Cp(N 4+ D)1+ D22 | H | oo (13| 1] -

Moreover the operator f — MPA[H, f] is bounded from H' to L', and of
weak type (1,1) with operator bound C'N (1 + Z)ZZdHHHéoo(Loo).

Proof. Let x; be the characteristic function of the annulus {z : 2/=3 <
lz] < 231 for I > 1, and let Yo be the characteristic function of the ball
{z : |z| < 8}. Let hl = hxx; and H' = {h}rcz. Then observe that by
the support property of x; (in the definition of 75) we have TF![H, f] =
TEAH!, f]. Proposition 4.1 yields the estimate

|MEH, flly = |MPUH, flly < Ca(1+ DI H ewzry, a > N +1

This implies the assertion for N +1 < p < oo.
To prove the Hardy space estimate we apply Proposition 3.2 in conjunc-
tion with Proposition 4.1 (for H! and ¢ = N + 1) and we obtain

IMPUH, flIh S
(N + D@+ DIH goozry + (L4 D™ 22 H | goo (o)) | ] 11

The asserted bound follows if we choose £ = (1+1)~!. The weak type (1,1)
bound follows similarly.

We may now use the complex method for bilinear operators (which is a
variant of Stein’s theorem for analytic families, see [1], §4.4) together with
the interpolation formula [Hy, LP']y = LP, for (1 — ) +9/p1 = 1/p, see [5].
Now define s = p//p} so that ¥ = (1 —¥)/oo +¥/1 = 1/s. We then obtain
the estimate

IMEH, Al < o1+ DN + D2 [ H e 1)1
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but since MPAH, f] = MPUH!, f] we may replace H with H' on the right
hand side of this inequality. Note that s < p’ and thus

2| H | goo oy S 2PN H | oo 1)
by Holder’s inequality. This yields the asserted bound. O

Remark. One could also analytically interpolate the H' — L' estimate with
the L — BMO estimate of Corollary 4.2 using the formula [Hy, BM O]y =
LP, 6 =1/p'. This formula follows from the result in [5] for [Hy, LP']y, and
[LPo, BMOly,, 1 < pyp < p1 < 0o, by Wolfl’s four space reiteration theorem,
see [12].

5. CONCLUSION: PROOF OF THEOREM 1.2

We only have to prove the LP estimates for p > 1 since the asserted weak
type (1,1) bound is then a consequence of Proposition 3.2.
We need to decompose m in terms of the rearrangement function w*. Let

Eo={k € Z: w*(2) < |w(k)| < w*(0)}
and for j =1,2,... let
Ej={keZ:w(2”) < |wk) <w (¥ "}

As in the introduction let ¢ € CZ° be supported in {£ : 1/2 < [£| < 2} so
that ¢(&) # 0 for 271/2 < ¢ < 212 Set $(€) = B(E) ( ez [#27O1) ™,

then v is smooth and we have

(5.1) > v F)sR ) =1, ¢+£0.

keZ

Let
=Y w2 7FH)e(27Fm(€)

kEE;
then m = > 222, m;; here we use that w*(k) — 0 as k — oc.

We now decompose F~1[¢m(2F-)] using the dyadic cutoff functions x;.
Define hi’o(x) = Fl¢pm(2%)](x) if |z| < 4 and k € E; and hi’o(x) =0,
if x| > 4 or k ¢ E;. Moreover for [ > 0 let hi’l(x) = Fpm(2F))(2) if
274 < |z| < 2'** and k € E; and hi’l(:n) =0, if |z| ¢ 274,24 or k ¢ E;.
Then

Hom(25)] =D hix

7=01=0
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and with H7! = {hj’l}kez ,and ¥ = F~ %), we may write

F! = gy (U Z (W)

keE;

-Sor s
The assumption (1.9) implies that
: e i1
HH]JH@OO(LP’) S27wr ()

for j > 1 (and a similar estimate with w*(0) for j = 0).
Note from the definition of the rearrangement function that

card(E;) < 2%
Thus we obtain by Proposition 4.3
M 1], < (P i @), G2

and a similar estimate with 27 w*(22]71) replaced by w*(0) when j = 0. By
our assumption a > d/p’ we therefore get

M fllp <D Mo, Fllp < >0 IIMEA[ET £,

§=0 1=0 j=0

€y > (14 D22 [u0) 4 3 222 )] I,
=0

j=1
< Cp w0 +Z A GATT

This concludes the proof of Theorem 1.2. O

6. A SKETCH OF THE PROOF OF THEOREM 1.4.

The proof is simpler than the proof of Theorem 1.2 but relies on the same
idea. Write T, f = f‘l[m,,f]. Assume that (1.13) holds with p’ =1, a > 0.
Then for 10! < ¢ < oo the operator T}, is bounded on L? with operator
norm O(gq), uniformly in v. We replace £*° norms by ¢¢ norms and estimate
for those ¢

B 7,19, = (S 1mflz) " < Cantiag) 1
v=1 v=1

This yields the desired result for ¢ > log(n + 1) > 10a~! since n!/1og(?+1)
is bounded as n — oo. Arguing as in the proof of Corollary 4.2 one also
gets an L>*° — BMO estimate with bound O(log(n + 1)). Finally, under
the analogue of (1.13) for p = 1 we derive an H' — L' estimate (using
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Proposition 3.2) and by an interpolation argument as used in Proposition
4.3 we may derive the asserted result for LP boundedness. O

7. REMARKS AND OPEN PROBLEMS

7.1. The main open problem is to completely close the gap in terms of the
power of logarithms in (1.5) and (1.7). In particular it should be interesting
to know assuming (1.11) for which s > 1 the condition

‘ o [wr @)y Ve
implies P boundedness of M,,. We have shown that s = 1 is sufficient, but
s > 2 is not.

Similarly, in (1.14) it would be interesting to investigate whether the
bound O(logn) can be replaced by O(log'/*n) for suitable s < 2.

7.2. If d = 1 the assumptions (1.13) on the kernels (which are differen-
tiability assumptions on the multiplier) are essentially sharp; this is seen by
examining the multipliers e¢|¢|~® Z]kvzl #(27%¢) for suitable ¢.

7.3. If m is radial, m(¢) = g(|¢|), then the space Ly, may be replaced

by L%d+1)/2+8 in the weak type (1,1) estimate (see [4]), of Corollary 1.3. By

analytic interpolation one obtain LP boundedness for 1 < p < 2 under the
conditions (1.11), (1.8) with with » = min{p, 2}, o > d/2 + (1/r — 1/2).

7.4. If (1.8) is replaced by a stronger decay assumption then much weaker
smoothness assumptions suffice, as demonstrated in [2], [4] under the as-
sumption w € £2. Various intermediate estimates can be derived by analytic
interpolation. It should be interesting to obtain in higher dimensions the
minimal smoothness assumption requiring only the decay in (1.8). The same
question can be formulated for the dyadic maximal operators.
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