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Abstract. We show that maximal operators formed by dilations of
Mikhlin-Hörmander multipliers are typically not bounded on L

p(Rd).
We also give rather weak conditions in terms of the decay of such mul-
tipliers under which L

p boundedness of the maximal operators holds.

1. Introduction

For a bounded Fourier multiplier m on R
d and a Schwartz function f in

S(Rd) define the maximal function associated with m by

Mmf(x) = sup
t>0

∣∣F−1[m(t·)f̂ ](x)
∣∣.

We are interested in the class of multipliers that satisfy the estimates of
the standard Mikhlin-Hörmander multiplier theorem

(1.1) |∂αm(ξ)| ≤ Cα|ξ|−α

for all (or sufficiently large) multiindices α. More precisely, let Lr
γ be the

standard Bessel-potential (or Sobolev) space with norm

‖f‖Lr
γ
= ‖(I −∆)γ/2f‖r;

here we include the case r = 1. Let φ be a smooth function supported in
{ξ : 1/2 < |ξ| < 2} which is nonvanishing on {ξ : 1/

√
2 ≤ |ξ| ≤

√
2}. Then

one imposes conditions on m of the form

(1.2) sup
k∈Z

‖φm(2k·)‖Lr
γ
<∞.

The function m is a Fourier multiplier on all Lp, 1 < p < ∞ if (1.2)
holds for γ > d/r, with 1 ≤ r ≤ 2 and the condition for r = 2 is the
least restrictive one (see [7]). Concerning the maximal operator Dappa and
Trebels [4] showed using Calderón-Zygmund theory that if Mm is a priori
bounded on some Lq, q > 1 and if (1.2) holds for r = 1, γ > d, then Mm

is of weak type (1, 1) and thus bounded on Lp for 1 < p < q. Using square
function estimates, the L2 boundedness of Mm has been shown in [2], [4]
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under certain additional decay assumptions (cf. also [9]). For instance, it
follows from [4] that

(1.3) ‖Mmf‖p ≤ Cp

(∑

k∈Z

‖φm(2k·)‖2X
)1/2

‖f‖p,

with X = Lp
d/p+ǫ for 1 < p ≤ 2 , and with X = L2

d/2+ǫ , for 2 ≤ p < ∞.

Further results in terms of weaker differentiability assumptions are in [2], [4],
especially for classes of radial multipliers. Moreover, if m is homogeneous of

degree 0 then trivially |Mmf | = |F−1[mf̂ ]|; this observation can be used to
build more general classes of symbols without decay assumptions for which
Mm is Lp bounded.

A problem left open in [4] is whether the Mikhlin-Hörmander type as-
sumption in (1.1) or (1.2) alone is sufficient to prove boundedness of the
maximal operator Mm. We show here that some additional assumption is
needed; indeed this applies already to the dyadic maximal function associ-
ated with m, defined by

(1.4) Mmf = sup
k∈Z

∣∣F−1[m(2k·)f̂ ]
∣∣,

which of course is dominated by Mmf .

Example. Let {v(l)}∞l=0 be a positive increasing and unbounded sequence.
Then there is a Fourier multiplier m satisfying

(1.5) sup
ξ

∣∣∂αξ
(
φ(ξ)m(2kξ)

)∣∣ ≤ Cα
v(|k|)√

log(|k|+ 2)
, k ∈ Z,

with Cα < ∞ for all multiindices α, so that the associated dyadic maximal
operator Mm is unbounded on Lp(Rd) for 1 < p <∞.

This counterexample will be explicitly constructed in §2. Taking v(l) =√
log(l + 2) we see that there exists m satisfying (1.1), so that Mm, and

hence Mm, are unbounded on Lp(Rd) for 1 < p < ∞. In view of these
examples it is not unexpected that unboundedness of Mm holds in fact for
the typical multiplier satisfying (1.1), i.e. on a residual set in the sense of
Baire category. In order to formulate a result let S be the space of functions
m ∈ C∞(Rd \ {0}) satisfying (1.1) with Cα < ∞ for all multiindices α. It
is easy to see that S is a Fréchet-space with the topology given by the
countable family of norms

(1.6) ‖m‖(j) = sup
|α|≤j

sup
ξ∈Rd

|ξ||α||∂αξ m(ξ)|.

Let S0 denote the space of Schwartz functions whose Fourier transform
have compact support in R

d \ {0} and let SM be the space of all m ∈ S for
which

sup{‖Mmf‖p : f ∈ S0, ‖f‖p ≤ 1}
is finite for some p ∈ (1,∞). Thus m ∈ S

M if and only if the linear operator

f 7→ {F−1[m(t·)f̂ ]}t>0 extends to a bounded operator from Lp to Lp(L∞)
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for some p ∈ (1,∞); in other words m ∈ S
M if and only if Mm extends to

a bounded operator on Lp(Rd), for some p ∈ (1,∞).

Theorem 1.1. S
M is of first category in S, in the sense of Baire.

In terms of positive results we note that there is a significant gap bet-
ween the known conditions in (1.3) and the weak decay (1.5). Assuming
‖φm(2k·)‖L1

d+ǫ
= O(|k|−α), then (1.3) yields Lp boundedness for 1 < p <∞

only when α > 1/2. We shall see that this result remains in fact valid under
the weaker assumption

(1.7) ‖φm(2k·)‖L1
d+ǫ

. (log(|k|+ 2))−1−ǫ.

In what follows we shall mainly aim for minimal decay but will also try to
formulate reasonable smoothness assumptions.

To formulate a general result we recall the definition of the nonincreasing
rearrangement of a sequence ω, defined for t ≥ 0 by

ω∗(t) = sup
{
λ > 0 : card

(
{k : |ω(k)| > λ}

)
> t

}
;

note that ω∗(0) = supk |ω(k)| and ω∗ is constant on the intervals [n, n+ 1),
n = 0, 1, 2, . . . .

Theorem 1.2. Let 1 < p < ∞, 1/p + 1/p′ = 1 and let ω : Z → [0,∞)
satisfy

(1.8) ω∗(0) +

∞∑

l=1

ω∗(l)

l
<∞.

(i) Suppose that for some α > d/p we have

(1.9)
( ∫

Rd

∣∣F−1[φm(2k·)]
∣∣p′(1 + |x|)αp′dx

)1/p′

≤ ω(k), k ∈ Z ,

then Mm is bounded on Lp(Rd).
(ii) If (1.9) holds for p′ = 1 then Mm maps L∞ to BMO.
(iii) If for some ε > 0

(1.10) sup
x
(1 + |x|)d+ǫ

∣∣F−1[φm(2k·)](x)
∣∣ ≤ ω(k), k ∈ Z.

Then Mm is of weak type (1, 1), and Mm maps H1 to L1.

By the Hausdorff-Young inequality for p ≤ 2 one deduces

Corollary 1.3. Suppose 1 < p <∞, r = min{p, 2}, and α > d/r. Suppose
that

(1.11) ‖φm(2k·)‖Lr
α
≤ ω(k), k ∈ Z,

where ω satisfies (1.8). Then Mm is bounded on Lp(Rd).

In particular we conclude that the condition

(1.12)
(∑

k∈Z

‖φm(2k·)‖qLr
α

)1/q
<∞



4 MICHAEL CHRIST, LOUKAS GRAFAKOS, PETR HONZÍK, ANDREAS SEEGER

with α, r as in the corollary, implies Lp boundedness. Indeed (1.12) implies

that ω∗(l) = O(l−1/q) as l → ∞. Of course Lp boundedness also holds if
ω∗(l) . (log(2 + l))−1−ε etc. which covers condition (1.7).

Finally we state a more elementary but closely related result about max-
imal functions for a finite number of Hörmander-Mikhlin type multipliers
mν , with no decay assumptions and not necessarily generated by dilating a
single multiplier.

Theorem 1.4. Let 1 < p < ∞, 1/p + 1/p′ = 1 and let {mν}ν≥1 be a
sequence of multipliers and define a maximal operator by

Mnf(x) = sup
1≤ν≤n

∣∣F−1[mν f̂ ](x)
∣∣.

Suppose that

(1.13) sup
ν

sup
k∈Z

(∫

Rd

∣∣F−1[φmν(2
k·)]

∣∣p′(1 + |x|)αp′dx
)1/p′

≤ A

for some α > d/p. Then for f ∈ Lp(Rd)

(1.14) ‖Mnf‖p ≤ CpA log(n+ 1)‖f‖p.
Again if the above assumptions hold for p = 1 then a weak type (1,1)

inequality and an H1 → L1 inequality hold, and if p = ∞ we have an
L∞ → BMO inequality, all with constant O(log(n + 1)).

Structure of the paper. In §2 we shall provide the above mentioned exam-
ples for unboundedness and prove Theorem 1.1. A tiling lemma for finite
sets of integers and other preliminaries needed in the proof of Theorem 1.2
are provided in §3. §4 contains the main relevant estimates for multipliers
supported in a finite union of annuli. In §5 we conclude the proof of Theo-
rem 1.2 and in §6 we give the proof of Theorem 1.4. Finally we state some
extensions and open problems.

2. Unboundedness of the maximal operator

We shall explicitly construct an example satisfying (1.5) and then use our
example to prove Theorem 1.1.

Define S = {1,−1, i,−i} and let SN be the set of sequences of length N

on S. Enumerate the 4N elements in SN by {sκ}4
N

κ=1. Let Φ be a smooth
function supported in 3/4 ≤ |ξ| ≤ 5/4, so that Φ(ξ) = 1 whenever 7/8 ≤
|ξ| ≤ 9/8. We let

mN (ξ) :=

4N∑

κ=1

N∑

j=1

sκ(j)Φ(2
−Nκ−jξ)

which is supported in {ξ : 1/2 ≤ |ξ| ≤ 2N4N+N+1}, and define m by

(2.1) m(ξ) =
∞∑

N=1

N−1/2v(4N )mN (2−N8N ξ).
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One observes that the terms in this sum have disjoint supports and that m
satisfies condition (1.5).

Fix 1 < p <∞. We will test the maximal operator Mm on functions fN,p

defined as follows. Pick a Schwartz function Ψ such that ‖Ψ‖p = 1 and so

that supp Ψ̂ is contained in the ball |ξ| ≤ 1/8. For 1 ≤ j ≤ N define

gN (x) =

N∑

j=1

e2πi2
jx1Ψ(x),

and set

(2.2) fN,p(x) = N−1/22dN8N /pgN (2N8Nx).

Then ĝN (ξ) =
∑N

j=1 Ψ̂(ξ − 2je1) and, by Littlewood-Paley theory,

‖gN‖p ≤ cpN
1/2, 1 < p <∞.

Thus

‖fN,p‖p ≤ cp <∞, 1 < p <∞,

uniformly in N .
The main observation is

(2.3)
∥∥∥ sup
1≤k≤N4N

∣∣∣F−1[mN (2k·)ĝN ]
∣∣∣
∥∥∥
p
≥ CN.

Given (2.3) we quickly derive the asserted unboundedness ofMm. Namely,
by the support properties of the mn it follows that

mn(2
k−n8nξ)ĝN (2−N8N ξ) = 0 if N 6= n, 1 ≤ k ≤ N4N .

Thus, setting an = n−1/2v(4n), we obtain

MmfN,p(x) ≥ sup
1≤k≤N4N

∣∣∣
∞∑

n=1

anF−1[mn(2
k−n8n ·)f̂N,p](x)

∣∣∣

≥ sup
1≤k≤N4N

aNN
− 1

2

∣∣F−1[mN (2k−N8N ·)2−
dN8N

p′ ĝN (2−N8N ·)](x)
∣∣

= aNN
− 1

22
dN8N

p sup
1≤k≤N4N

∣∣F−1[mN (2k·)ĝN ](2N8N x)
∣∣.

Taking Lp(Rd) norms and using (2.3) we conclude that

(2.4) ‖MmfN,p‖p ≥ CaNN
1/2 = Cv(4N ).

By the assumed unboundedness of the increasing sequence v it follows that
Mm is not bounded on Lp.

Proof of (2.3). For any complex number z the quantity supc∈S Re (cz)

is at least |z|/
√
2. Thus for x ∈ R

d and 1 ≤ j ≤ N we may pick cj(x) ∈ S
such that

(2.5) Re
(
cj(x)e

2πi2jx1Ψ(x)
)
≥ |Ψ(x)|/

√
2.
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We can find κx in {1, . . . , 4N} such that

cj(x) = sκx(j), j = 1, . . . , N.

Taking k = κxN we obtain

sup
1≤k≤N4N

∣∣F−1[mN (2k·)ĝN ]
(
x)|

≥ Re

∫ 4N∑

l=1

N∑

ν=1

sl(ν)Φ(2
−Nl−ν2Nκxξ)

N∑

j=1

Ψ̂(ξ − 2je1)e
2πi〈x,ξ〉dξ.

Since 1 ≤ j ≤ N , the supports of Φ(2−Nl−ν2Nκxξ) and Ψ̂(ξ−2je1) intersect
only when l = κx and j = ν. In this case Φ(2−Nl−ν2Nκxξ) = Φ(2−jξ) is

equal to 1 on the support of Ψ̂(ξ − 2j). Therefore we obtain from (2.5) the
pointwise estimate

sup
1≤k≤N4N

∣∣F−1[mN (2k·)ĝN ]
(
x)|

≥
N∑

j=1

Re
(
sκx(j)F−1[Ψ̂(· − 2j)](x)

)
≥ N |Ψ(x)|/

√
2 .

Taking Lp norms yields (2.3). �

Proof of Theorem 1.1. The space S is a complete metric space and the
metric is given by

d(m1,m2) =

∞∑

j=0

2−j
‖m1 −m2‖(j)

1 + ‖m1 −m2‖(j)

where ‖ · ‖(j) is defined in (1.6).
Let fN,r′ be as in (2.2) (with p = r′) and for integers r, n,N , all ≥ 2,

consider the set

S(r, n,N) = {m ∈ S : ‖MmfN,r′‖r′ ≤ n},
here r′ = r/(r − 1), and the set

S(r, n) =

∞⋂

N=2

S(r, n,N).

We shall show that S(r, n) is closed in S, and nowhere dense. We also
observe that

(2.6) S
M ⊂

∞⋃

r=2

∞⋃

n=2

S(r, n);

thus S
M is of first category. To see (2.6) assume that Mm is bounded on

Lp0 , for some p0 > 1. By the theorem by Dappa and Trebels mentioned
before (cf. Proposition 3.2 below) it follows that Mm is bounded on Lp

for 1 < p < p0, in particular bounded on Lr′ for some integer r ≥ 2. We
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note that fN,r′ ∈ S0 is such that ‖fN,r′‖r′ ≤ Cr, independently of N . Thus
m ∈ S(r, n) for sufficiently large n.

Next, in order to show that the sets S(r, n) are closed it suffices to show
that the sets S(r, n,N) are closed for all N ≥ 2. For integers l1 ≤ l2
denote by S(l1, l2) the class of Schwartz functions whose Fourier transform
is supported in the annulus {ξ : 2l1−1 ≤ |ξ| ≤ 2l2+1}. We observe the
following inequality

‖Mmf‖p ≤ C(p)‖m‖(d+1)(1 + |l2 − l1|)‖f‖p, if f ∈ S(l1, l2),
which (in view of the dependence on l1, l2) can be obtained by standard
techniques, see e.g. [4] or [9]. Note that every fN,r′ is in some class S(l1, l2)
with l2 − l1 ≤ N . Now, if mν ∈ S(r, n,N) and limν→∞ d(mν ,m) = 0 then

‖MmfN,r′‖r′ ≤ n+ ‖Mm−mνfN,r′‖r′ ≤ n+ C(r′)‖m−mν‖(d+1)‖fN,r′‖r′

and since ‖m−mν‖(d+1) → 0 we see that m ∈ S(r, n,N). Thus S(r, n,N)
is closed.

Finally we need to show that S(r, n) is nowhere dense in S; since this
set is closed we need to show that it does not contain any open balls. Now
if g ∈ S(r, n) then consider the sequence gν = g + 2−νm where m is as in
(2.1). Clearly d(gν , g) → 0. However by (2.4) we have that gν /∈ S(r, n,N)
for sufficiently large N and thus gν /∈ S(r, n) for any r, n. Thus S(r, n) is
nowhere dense. �

3. Preliminaries.

A tiling lemma. In §5 below we shall decompose the multiplier into pieces
with compact but large support. In order to effectively estimate the maximal
function associated to these pieces we shall use the following “tiling” lemma
for integers.

Lemma 3.1. Let N > 0 and let E be a set of integers of cardinality ≤ 2N .
Then we can find a set B = {bi}i∈Z of integers, such that

(i) the sets bi + E are pairwise disjoint,
(ii) bi ∈ [i4N+1, (i+ 1)4N+1), and

(iii) Z = ∪4N+1

n=−4N+1(n+B).

Proof: Clearly (iii) is an immediate consequence of (ii). We enumerate

the set E = {eν}2
N

ν=1.
We set b0 = 0, and construct bj , b−j for j > 0 by induction. Assume that

bi ∈ [i4N+1, (i + 1)4N+1) has been constructed for −j < i < j so that the
sets bi + E are pairwise disjoint.

For ν = 1, . . . , 2N we denote by Cj
ν the subset of all integers c in [j4N+1, (j+

1)4N+1) with the property that eν + c ∈ ∪j−1
i=1−j(bi + E).

We shall verify

(3.1) card
(
∪2N
ν=1 C

j
ν

)
≤ 22N+1 < 4N+1.
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Given (3.1) we may simply take

bj ∈ [j4N+1, (j + 1)4N+1) \
(
∪2N
ν=1 C

j
ν

)

and by construction the sets b1−j + E, . . . , bj + E are disjoint.
In order to verify (3.1) observe that eν+c ∈ [j4N+1+eν , (j+1)4N+1+eν)

if c ∈ Cj
ν . Thus

card(Cj
ν) = card

(
[j4N+1 + eν , (j + 1)4N+1 + eν

)
∩ ∪j−1

i=1−j(bi + E)
)
.

Since by the induction assumption bi+2−bi > 4N+1, if i ≥ 1−j, i+2 ≤ j−1,
this gives

card
(
[j4N+1 + eν , (j + 1)4N+1 + eν) ∩ ∪j−1

i=1−j(bi + {eν})
)
≤ 2

for all ν. This means card(Cj
ν) ≤ 2card(E) ≤ 2N+1 and thus the cardinality

of ∪2N
ν=1C

j
ν is bounded by 2N2N+1 < 4N+1, as claimed.

To finish the induction step we repeat this argument to construct b−j. For

ν = 1, . . . , 2N we denote by C−j
ν the subset of all integers c in [−j4N+1, (1−

j)4N+1) with the property that eν + c ∈ ∪j
i=1−j(bi+E). Again we verify (by

repeating the argument above) that the cardinality of ∪2N
ν=1C

−j
ν is < 4N+1

and then we may choose b−j ∈ [−j4N+1, (1 − j)4N+1) so that b−j does not

belong to ∪2N
ν=1C

−j
ν . Then by construction the sets b−j + E, . . . , bj + E are

disjoint. �

Weak type (1,1) and Hardy space estimates. For a countable set of
multipliers {mν}ν∈I consider the maximal function given by

Mf(x) = sup
ν∈I

|F−1[mν f̂ ](x)|.

We shall apply the following result on maximal functions which is based on
Calderón-Zygmund theory and essentially proved in [4]. In what follows H1

denotes the standard Hardy space.

Proposition 3.2. Suppose that for some positive ǫ ≤ 1

sup
ν∈I

sup
k∈Z

sup
x∈Rd

(1 + |x|)d+ǫ
∣∣F−1[φmν(2

k·)](x)
∣∣ ≤ A0

and suppose that M is bounded on Lq (for some q > 1) with operator
norm A1. Then M is bounded from H1 to L1 with operator norm at most
Cd(A0ε

−1 +A1); moreover M is of weak type (1,1) with the estimate

sup
α>0

αmeas
(
{x : |Mf(x)| > α}

)
≤ Cd(A0ε

−1 +A1)‖f‖1.

Proof. We prove the weak-type (1, 1) bound. Fix α > 0. We use the stan-
dard Calderón-Zygmund decomposition (see [11]) at level β = (2d+1A1)

−1α.
Thus we decompose f = gβ + bβ where |gβ | ≤ 2dβ and bβ =

∑
bβ,Q, where

bβ,Q is supported on Q and has mean value 0. Moreover, if Q∗ denotes the
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2
√
d-dilate of Q with same center, then the dilated cubes Q∗ have bounded

overlap and
∑

Q

meas(Q∗) ≤ C(d)β−1‖f‖1 ≤ 2d+1C(d)A1α
−1‖f‖1.

Let Kν,j = F−1[φ(2−j ·)mν ]. We argue similarly as in Lemma 1 of [4] to
verify the following vector-valued Hörmander condition for maximal opera-
tors (see [13]):

(3.2)

∫

|x|≥2|y|
sup
ν

∑

j

∣∣∣Kν,j(x− y)−Kν,j(x)
∣∣dx ≤ Cdǫ

−1A0.

Let K̃ν,j = F−1[φmν(2
j ·)] so that Kν,j(x) = 2jdK̃ν,j(2

jx). By assumption
we have the pointwise estimate

|K̃ν,j(x)|+ |∇K̃ν,j(x)| . A0(1 + |x|)−d−ε,

uniformly in ν and j. This quickly yields
∫

|x|≥2|y|
sup
ν

∣∣∣Kν,j(x− y)−Kν,j(x)
∣∣dx . A0 min{(2j |y|)−ε, 2j |y|};

thus after summing in j we obtain (3.2). This inequality implies in the usual
way

meas{x /∈ ∪Q∗ : Mbβ(x) > α/2} . A0ε
−1α−1‖f‖1.

For the contribution of the “good” function gβ we obtain

(3.3)

meas{x : Mgβ(x) > α/2} ≤ 2qα−q‖Mgβ‖qq
≤ 2qα−qAq

1‖gβ‖qq ≤ 2qα−qAq
1(2

dβ)q−1‖f‖1
≤ 2A1α

−1‖f‖1.
A combination of these estimates yields the weak-type (1, 1) estimate.

Finally for the H1 − L1 bound we use the atomic decomposition of H1

and it suffices to prove the estimate

‖MfQ‖1 . (A0ε
−1 +A1)

for functions fQ supported on a cube Q satisfying
∫
fQdx = 0 and ‖fQ‖∞ ≤

|Q|−1. If Q∗ denotes the expanded cube, then we get

‖MfQ‖L1(Q∗) . |Q|
1
q′ ‖MfQ‖q . |Q|

1
q′A1‖fQ‖q . A1.

Using the cancellation of the atom we see that (3.2) implies

‖MfQ‖L1(Rd\Q∗) . A0ε
−1

and combining the two estimates we get the asserted H1 → L1 estimate. �

Note that the hypothesis in the proposition is implied by

sup
ν∈I

sup
k∈Z

‖φmν(2
k·)‖L1

d+ǫ
≤ A0.
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The result of Dappa and Trebels [4] mentioned in the introduction corre-
sponds to the special case where mν = m(tν ·) and {tν} is an enumeration
of the positive rational numbers.

4. Results on Lp boundedness

In this section E will be a set of integers satisfying

card(E) ≤ 2N ;(4.1)

here N is a nonnegative integer.
Let ψ ∈ C∞

c be supported in {ξ : 1/4 < |ξ| < 4} and set Ψ = F−1[ψ];
later we shall work with a specific ψ satisfying (5.1).

Let χ ∈ C∞
c (Rd) so that χ is radial and supported where R0 ≤ |x| ≤ R1

with 1/2 < R0 < R1 < 2; moreover assume that χ is positive for R0 <
|x| < R1 and that

∑∞
l=−∞ χ(2−lx) = 1 for x 6= 0. Now set χ0(x) =

(
1 −∑

l>0 χ(2
−lx)

)
so that χ0 is supported where |x| ≤ 2. Let χl(x) = χ(2−lx)

for l > 0; then
∑∞

l=0 χl(x) ≡ 1.
For a function g define by δtg the L1 dilate; i.e.

δtg(x) = t−dg(t−1x).

For a sequence H = {hk}k∈Z of locally integrable functons we then consider
the operator

(4.2) T E,l
t [H, f ] =

∑

k∈E

δ2kt
[
Ψ ∗ (χlhk)

]
∗ f

and the maximal function

ME,l[H, f ] = sup
t>0

∣∣T E,l
t [H, f ]|.

In §5 we shall decompose F−1[m(t·)f̂ ] in terms of operators of the form
(4.2).

The following Lq bound is favorable when q ≥ N + l.

Proposition 4.1. Assuming (4.1) we have for q ≥ 2

‖ME,l[H, f ]‖q ≤ C q 4N/q (1 + l)2l/q ‖H‖ℓ∞(L1)‖f‖q.

Proof. In what follows we shall use the notation A . B to indicate an
inequality A ≤ CB where C may only depend on d (and not on q or other
parameters).

Define
gk,l(ξ) = ψ(ξ)ĥkχl(ξ)

and

(4.3) ml(ξ) ≡ ml,E(ξ) =
∑

k∈E

gk,l(2
−kξ);

then
T E,l
t [H, f ] = F−1[ml(t·)f̂ ].
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Also note that

(4.4) ∂s
[
ml(sξ)

]
=

∑

k∈E

g̃k,l(s2
−kξ)

where

(4.5) g̃k,l(ξ) = ψ(ξ)〈ξ,∇〉χ̂lhk(ξ) + χ̂lhk(ξ)〈ξ,∇〉ψ(ξ).
Now apply Lemma 3.1 for the set E, and let bj be as in Lemma 3.1 (ii).

By (iii) of Lemma 3.1 we may write

sup
t>0

|F−1[ml(t·)f̂ ]| = sup
|n|≤4N+1

sup
j∈Z

sup
1≤s≤2

∣∣F−1[ml(2−bj+ns·)f̂ ]
∣∣.

Now one replaces the supremum in n and j by ℓq norms, takes the Lq norms,
then interchanges the order of summation and integration. This yields for
ME,l[H, f ] ≡ Mmlf the estimate

(4.6)
∥∥Mmlf

∥∥
q
≤ 4

(N+2)
q sup

|n|≤4N+1

(∑

j

∥∥∥ sup
1≤s≤2

∣∣F−1[ml(2−bj+ns·)f̂ ]
∣∣
∥∥∥
q

q

) 1
q
.

Thus it remains to verify that for |n| ≤ 4N+1

(4.7)
(∑

j

∥∥∥ sup
1≤s≤2

∣∣F−1[ml(2−bj+ns·)f̂ ]
∣∣
∥∥∥
q

q

) 1
q
. q(1+ l)2

l
q ‖H‖ℓ∞(L1)‖f‖q.

In what follows we may assume that n = 0 since the general case follows by
scaling.

To estimate the supremum in s it is standard to use the elementary in-
equality

|F (s)|q ≤ |F (1)|q + q
(∫ s

1
|F (σ)|qdσ

) q−1
q
(∫ s

1
|F ′(σ)|qdσ

) 1
q

which is obtained by applying the fundamental theorem of calculus to |F |q
and Hölder’s inequality.

Taking Lq norms and applying Hölder’s inequality twice yields

(4.8)

∑

j

∥∥ sup
1≤s≤2

∣∣F−1[ml(2−bjs·)f̂ ]
∣∣∥∥q

q
.

∑

j∈Z

∥∥III lj
∥∥q
q

+ q
(∫ 2

1

∑

j∈Z

∥∥I lj(s)
∥∥q
q
ds
) q−1

q
( ∫ 2

1

∑

j∈Z

∥∥II lj(s)
∥∥q
q
ds
) 1

q
,

where

I lj(s) = F−1
[
ml(2−bjs·)f̂

]

II lj(s) = F−1
[
∂s
(
ml(2−bj ·)

)
f̂
]

III lj = F−1
[
ml(2−bj ·)f̂

]
.

Next, we interchange the j-summations and integrations in (4.8) and use
the imbedding of ℓ2 into ℓq. This yields
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(4.9)(∑

j

∥∥ sup
1≤s≤2

|F−1[ml(2−bjs·)f̂ ]|
∥∥q
q

)1/q

.
(∫ 2

1

∥∥∥
(∑

j∈Z

|I lj(s)|2
)1/2∥∥∥

q

q
ds
) q−1

q2
(∫ 2

1

∥∥∥
(∑

j∈Z

|II lj(s)|2
)1/2∥∥∥

q

q
ds
) 1

q2

+
∥∥∥
(∑

j∈Z

|III lj |2
)1/2∥∥∥

q
.

In order to estimate these terms we need the following estimates for vector
valued singular integrals.

Sublemma. For 2 ≤ q <∞ we have

(4.10)
∥∥∥
(∑

j∈Z

∣∣∣
∑

k∈E

F−1[gk,l(2
−bj−k·)f̂ ]

∣∣∣
2)1/2∥∥∥

q
. q(1 + l)‖H‖ℓ∞(L1)‖f‖q

and

(4.11)
∥∥∥
(∑

j∈Z

∣∣∣
∑

k∈E

F−1[g̃k,l(2
−bj−k·)f̂ ]

∣∣∣
2)1/2∥∥∥

q
. q(1+ l)2l‖H‖ℓ∞(L1)‖f‖q.

Sketch of Proof. By duality (4.10) for 2 ≤ q <∞ is equivalent to

(4.12)
∥∥∥
(∑

j∈Z

∣∣∣
∑

k∈E

F−1[gk,l(2
−bj−k·)f̂j ]

∣∣∣
2)1/2∥∥∥

p

. p′(1 + l)−1+2/p‖H‖ℓ∞(L1)

∥∥∥
(∑

j

|fj|2
)1/2∥∥∥

p

for 1 < p ≤ 2, p′ = p/(p − 1). For p = 2 this (and in fact a slightly better)
bound follows from the essential disjointness of the supports of gk,l and the
estimate

‖gk,l‖∞ ≤ C‖ĥk‖∞ ≤ C‖H‖ℓ∞(L1).

For 1 < p ≤ 2 the inequality (4.12) follows from the weak type bound

(4.13) meas
({
x :

(∑

j∈Z

∣∣∣
∑

k∈E

F−1[gk,l(2
−bj−k·)f̂j ]

∣∣∣
2)1/2

> λ
})

. Cλ−1(1 + l)‖H‖ℓ∞(L1)

∥∥∥
(∑

j

|fj|2
)1/2∥∥∥

1

where in the interpolation we have to take into account the behavior of the
constants in the Marcinkiewicz interpolation theorem (see e.g. [6], p. 33).
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The weak type estimate follows by standard arguments in Calderón-
Zygmund theory from the inequality

∫

|x|>2|y|

(∑

j

∣∣∣
∑

k∈E

(
F−1[gk,l(2

−bj−k·)](x− y)

−F−1[gk,l(2
−bj−k·)](x)

)∣∣∣
2)1/2

dx . (1 + l)‖H‖ℓ∞(L1)

which, since the sets {bj + E}j∈Z are disjoint, is quickly derived from the
inequalities

(4.14)

∫

|x|>2|y|

∣∣F−1[gk,l(2
−M ·)](x− y)−F−1[gk,l(2

−M ·)](x)
∣∣dx

. ‖hk‖1 ×





2M |y| if 2M |y| ≤ 1

1 if 1 ≤ 2M |y| ≤ 22l

(2M |y|)−1 if 2M |y| ≥ 22l
.

Summing in M yields a blowup of order O(1 + l). The bound (4.14) is
straightforward given the localization of χl and the decay of the Schwartz-
function Ψ. This finishes the proof of (4.10).

In order to verify (4.11) we note from (4.5) that

F−1[g̃k,l](x) = c1

d∑

i=1

∫
∂xi

Ψ(x− y)yiχl(y)hk(y)dy

+ c2

d∑

i=1

∫
xi∂xi

Ψ(x− y)χl(y)hk(y)dy.

Here the second term has the same quantitative properties as F−1[gk,l] while

the first has similar estimates as 2lF−1[gk,l]. Thus the above arguments show
(4.11) as well. �

Proof of Proposition 4.1, cont. For fixed s we may perform the scaling
ξ → s−1ξ in (4.9); this puts us in the position to apply the sublemma. We
then see that the right hand side of (4.9) can be estimated by a constant
times

q(1 + l)‖H‖ℓ∞(L1)(1 + 2l/q)‖f‖q
which implies the desired bound (4.7). �

Corollary 4.2. Assuming (4.1) we have

‖ME,l[H, f ]‖BMO ≤ C(N + l)(1 + l)‖H‖ℓ∞(L1)‖f‖L∞ .

Proof. Let Q be a cube in R
d with center xQ and let Q∗ be the 2

√
d-dilate

with same center. By the definition of BMO and Hölder’s inequality the
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assertion follows from
(4.15)( 1

|Q|

∫

Q
|ME,l[H, fχQ∗]|N+ldx

) 1
N+l

. (N + l)(1 + l)‖H‖ℓ∞(L1)‖f‖L∞

and, with ml as in (4.3),

(4.16) sup
x∈Q

sup
t>0

∫

Rd\Q∗

∣∣F−1[ml(t·)](x − y)−F−1[ml(t·)](xQ − y)
∣∣dy

. (1 + l)‖H‖ℓ∞(L1)‖f‖L∞ .

The left hand side of (4.15) is bounded by the LN+l operator norm of
ME,l(H, ·) times |Q|−1/(N+l)‖fχQ∗‖N+l and (4.15) follows from Proposition
4.1. Inequality (4.16) is deduced from the estimates in the Sublemma. �

Proposition 4.3. Suppose that (4.1) holds. Then for 1 < p < ∞, 1/p +
1/p′ = 1,

‖ME,l[H, f ]‖p ≤ Cp(N + l)(1 + l)2ld/p‖H‖ℓ∞(Lp′ )‖f‖p.

Moreover the operator f 7→ ME,l[H, f ] is bounded from H1 to L1, and of
weak type (1, 1) with operator bound CN(1 + l)2ld‖H‖ℓ∞(L∞).

Proof. Let χ̃l be the characteristic function of the annulus {x : 2l−3 ≤
|x| ≤ 2l+3}, for l ≥ 1, and let χ̃0 be the characteristic function of the ball
{x : |x| ≤ 8}. Let hlk = hkχ̃l and H l = {hlk}k∈Z. Then observe that by

the support property of χl (in the definition of T E,l) we have T E,l[H, f ] =
T E,l[H l, f ]. Proposition 4.1 yields the estimate

‖ME,l[H, f ]‖q = ‖ME,l[H l, f ]‖q ≤ Cq(1 + l)‖H l‖ℓ∞(L1), q ≥ N + l

This implies the assertion for N + l ≤ p <∞.
To prove the Hardy space estimate we apply Proposition 3.2 in conjunc-

tion with Proposition 4.1 (for H l and q = N + l) and we obtain

‖ME,l[H, f ]‖1 .
(
(N + l)(1 + l)‖H l‖ℓ∞(L1) + (1 + l)ε−12lǫ2ld‖H l‖ℓ∞(L∞)

)
‖f‖H1 .

The asserted bound follows if we choose ε = (1+ l)−1. The weak type (1, 1)
bound follows similarly.

We may now use the complex method for bilinear operators (which is a
variant of Stein’s theorem for analytic families, see [1], §4.4) together with
the interpolation formula [H1, L

p1 ]ϑ = Lp, for (1− ϑ) + ϑ/p1 = 1/p, see [5].
Now define s = p′/p′1 so that ϑ = (1 − ϑ)/∞ + ϑ/1 = 1/s. We then obtain
the estimate

‖ME,l[H, f ]‖p ≤ Cp(1 + l)(N + l)2ld/s
′‖H‖ℓ∞(Ls)‖f‖p
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but since ME,l[H, f ] = ME,l[H l, f ] we may replace H with H l on the right
hand side of this inequality. Note that s < p′ and thus

2ld/s
′‖H l‖ℓ∞(Ls) . 2ld/p‖H l‖ℓ∞(Lp′ ),

by Hölder’s inequality. This yields the asserted bound. �

Remark. One could also analytically interpolate the H1 → L1 estimate with
the L∞ → BMO estimate of Corollary 4.2 using the formula [H1, BMO]θ =
Lp, θ = 1/p′. This formula follows from the result in [5] for [H1, L

p1 ]ϑ1 and
[Lp0 , BMO]ϑ2 , 1 < p0 < p1 <∞, by Wolff’s four space reiteration theorem,
see [12].

5. Conclusion: Proof of Theorem 1.2

We only have to prove the Lp estimates for p > 1 since the asserted weak
type (1, 1) bound is then a consequence of Proposition 3.2.

We need to decompose m in terms of the rearrangement function ω∗. Let

E0 = {k ∈ Z : ω∗(2) < |ω(k)| ≤ ω∗(0)}

and for j = 1, 2, . . . let

Ej = {k ∈ Z : ω∗(22
j

) < |ω(k)| ≤ ω∗(22
j−1

)}.

As in the introduction let φ ∈ C∞
c be supported in {ξ : 1/2 < |ξ| < 2} so

that φ(ξ) 6= 0 for 2−1/2 ≤ |ξ| ≤ 21/2. Set ψ(ξ) = φ(ξ)
(∑

j∈Z |φ(2−jξ)|2
)−1

,
then ψ is smooth and we have

∑

k∈Z

ψ(2−kξ)φ(2−kξ) = 1, ξ 6= 0.(5.1)

Let

mj(ξ) =
∑

k∈Ej

ψ(2−kξ)φ(2−kξ)m(ξ)

then m =
∑∞

j=0mj; here we use that ω∗(k) → 0 as k → ∞.

We now decompose F−1[φm(2k·)] using the dyadic cutoff functions χl.

Define hj,0k (x) = F−1[φm(2k·)](x) if |x| ≤ 4 and k ∈ Ej and hj,0k (x) = 0,

if |x| > 4 or k /∈ Ej . Moreover for l > 0 let hj,lk (x) = F−1[φm(2k·)](x) if

2l−4 ≤ |x| ≤ 2l+4 and k ∈ Ej and hj,lk (x) = 0, if |x| /∈ [2l−4, 2l+4] or k /∈ Ej.
Then

F−1[φm(2k·)] =
∞∑

j=0

∞∑

l=0

hj,lk χl
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and with Hj,l = {hj,lk }k∈Z , and Ψ = F−1ψ, we may write

F−1[mj(t·)f̂ ] =
∑

k∈Ej

δ2kt
(
Ψ ∗

∞∑

l=0

(hj,lk χl)
)

=

∞∑

l=0

T Ej ,l
t [Hj,l, f ].

The assumption (1.9) implies that

‖Hj,l‖ℓ∞(Lp′ ) . 2−lαω∗(22
j−1

)

for j ≥ 1 (and a similar estimate with ω∗(0) for j = 0).
Note from the definition of the rearrangement function that

card(Ej) ≤ 22
j

.

Thus we obtain by Proposition 4.3
∥∥MEj ,l[Hj,l, f ]

∥∥
p
. (1 + l)22−l(α−d/p′)2jω∗(22

j−1
), j ≥ 1,

and a similar estimate with 2jω∗(22
j−1

) replaced by ω∗(0) when j = 0. By
our assumption α > d/p′ we therefore get

‖Mmf‖p ≤
∞∑

j=0

‖Mmj
f‖p ≤

∞∑

l=0

∞∑

j=0

‖MEj ,l[Hj,l, f ]‖p

≤ Cp

∞∑

l=0

(1 + l)22−l(α−d/p′)
[
ω∗(0) +

∞∑

j=1

2jω∗(22
j−1

)
]
‖f‖p

. C ′
p

[
ω∗(0) +

∞∑

n=2

ω∗(n)

n

]
‖f‖p.

This concludes the proof of Theorem 1.2. �

6. A sketch of the proof of Theorem 1.4.

The proof is simpler than the proof of Theorem 1.2 but relies on the same

idea. Write Tνf = F−1[mν f̂ ]. Assume that (1.13) holds with p′ = 1, α > 0.
Then for 10α−1 < q < ∞ the operator Tν is bounded on Lq with operator
norm O(q), uniformly in ν. We replace ℓ∞ norms by ℓq norms and estimate
for those q

‖Mnf‖q ≤
∥∥∥
( n∑

ν=1

|Tνf |q
)1/q∥∥∥

q
=

( n∑

ν=1

‖Tνf‖qq
)1/q

≤ Cαn
1/qq‖f‖p.

This yields the desired result for q ≥ log(n + 1) ≥ 10α−1 since n1/ log(n+1)

is bounded as n → ∞. Arguing as in the proof of Corollary 4.2 one also
gets an L∞ → BMO estimate with bound O(log(n + 1)). Finally, under
the analogue of (1.13) for p = 1 we derive an H1 → L1 estimate (using



MAXIMAL FUNCTIONS AND MIKHLIN-HÖRMANDER MULTIPLIERS 17

Proposition 3.2) and by an interpolation argument as used in Proposition
4.3 we may derive the asserted result for Lp boundedness. �

7. Remarks and open problems

7.1. The main open problem is to completely close the gap in terms of the
power of logarithms in (1.5) and (1.7). In particular it should be interesting
to know assuming (1.11) for which s > 1 the condition

ω∗(0) +
( ∞∑

l=1

[ω∗(l)]s

l

)1/s
<∞

implies Lp boundedness of Mm. We have shown that s = 1 is sufficient, but
s > 2 is not.

Similarly, in (1.14) it would be interesting to investigate whether the

bound O(log n) can be replaced by O(log1/sn) for suitable s ≤ 2.

7.2. If d = 1 the assumptions (1.13) on the kernels (which are differen-
tiability assumptions on the multiplier) are essentially sharp; this is seen by

examining the multipliers eiξ|ξ|−α
∑N

k=1 φ(2
−kξ) for suitable φ.

7.3. If m is radial, m(ξ) = g(|ξ|), then the space L1
d+ε may be replaced

by L1
(d+1)/2+ε in the weak type (1,1) estimate (see [4]), of Corollary 1.3. By

analytic interpolation one obtain Lp boundedness for 1 ≤ p ≤ 2 under the
conditions (1.11), (1.8) with with r = min{p, 2}, α > d/2 + (1/r − 1/2).

7.4. If (1.8) is replaced by a stronger decay assumption then much weaker
smoothness assumptions suffice, as demonstrated in [2], [4] under the as-
sumption ω ∈ ℓ2. Various intermediate estimates can be derived by analytic
interpolation. It should be interesting to obtain in higher dimensions the
minimal smoothness assumption requiring only the decay in (1.8). The same
question can be formulated for the dyadic maximal operators.
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