SOBOLEV IMPROVING FOR AVERAGES OVER CURVES IN R?
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ABSTRACT. We study LP-Sobolev improving for averaging operators A, given by convolution
with a compactly supported smooth density ., on a non-degenerate curve. In particular, in 4
dimensions we show that A, maps L”(R*) to the Sobolev space Ly, (R*) for all 6 < p < co. This
implies the complete optimal range of LP-Sobolev estimates, except possibly for certain endpoint
cases. The proof relies on decoupling inequalities for a family of cones which decompose the wave
front set of p14. In higher dimensions, a new non-trivial necessary condition for L?(R") — Lf/p (R™)
boundedness is obtained, which motivates a conjectural range of estimates.

1. INTRODUCTION

For n > 2let v: I — R™ be a smooth curve,! where I — R is a compact interval, and x € C*(R)
be a bump function supported on the interior of I. Consider the averaging operator

Ay f(x) = /R £z = (s)) x(s) ds; (L1)

in particular, Ay f = ., * f, where 11, is the measure given by the push-forward of x(s)ds under ~.

The goal of this paper is to study sharp LP-Sobolev improving bounds for the operator A, for
a wide class of curves in R*. To state the main theorem, we say a smooth curve v: I — R" is
non-degenerate if there is a constant ¢y > 0 such that

|det(7/(s), -+ ,7™(s))| =g forallsel (1.2)
or, equivalently, the n — 1 curvature functions of v are all bounded away from 0.

Theorem 1.1. If y: I — R* is non-degenerate and 6 < p < o, then
HAVfHLf/p(R‘*) Spayx e @y

This result is sharp up to p = 6 in the sense that the L? — L¥, bound fails whenever 2 < p < 6:

1/p
see Proposition 1.2 below. Furthermore, interpolation with the elementary L? — L% /4 inequality

and duality give the complete range of LP — L}, estimates for all 1 < p < 00, except possibly for
endpoint cases.

In higher dimensions no LP — L’lj v estimates are currently known to hold for such averaging
operators, although it is natural to conjecture that the following holds.

Conjecture 1. If v: I — R"™ is non-degenerate and 2n — 2 < p < o, then
HAvf”Lf/p(Rn) Spx HfHLP(R")- (1.3)
If true, then the above conjectured range would be sharp except for some endpoint cases, viz.
Date: September 17, 2021.

1Throughout, any curve is tacitly assumed to be simple (that is, 7 is injective) and regular (¥ is non-vanishing).
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Proposition 1.2. Let 2 < p < . Ifv: I — R" is non-degenerate and the inequality
[ Ay fllzz @ny Spao [1flLe@ny

holds, then we must have o < min {%(% + %), %}

As in the case of Theorem 1.1, the sharp estimates for 1 < p < 2n — 2 would follow from
Conjecture 1 by interpolation with the L? — L% In inequality and duality, except the endpoint

regularity estimates for %Z:g <p<2n—2,p#2

In the euclidean plane Conjecture 1 is an elementary consequence of the decay of the Fourier
transform of the measure yi. In higher dimensions the problem is significantly more difficult, owing
to the weaker rate of Fourier decay.? The n = 3 case was established up to the p = 4 endpoint by
Pramanik and the fourth author [17], conditional on the sharp Wolff-type ‘/P-decoupling’ inequality
for the light cone. The sharp decoupling inequality was later proved by Bourgain-Demeter [1],
thus establishing the bounds for the averaging operators unconditionally. Theorem 1.1 verifies the
n = 4 case of Conjecture 1 up to the p = 6 endpoint. The proof strategy behind Theorem 1.1
is based on that used to study the n = 3 case in [17], although significant new features and
additional complications arise in the four-dimensional setting. To overcome these difficulties,
advantage is taken of recent new advances in the understanding of decoupling theory. A key tool
is the Bourgain—Demeter-Guth decoupling theorem for curves [5].

The first stage of the argument relies on a careful decomposition of the operator in the frequency
domain. This part of the proof is inspired by the analysis of the helical maximal function appearing
in [1] (see also [17]). Indeed, the maximal problem treated in [!] shares a number of essential
features with Theorem 1.1. In particular, for both problems it is natural to microlocalise the
operator with respect to a pair of nested cones in the frequency domain (see the introductory
discussion in [!] for more details). However, a quick comparison between this paper and [!] shows
that the methods and overall proof scheme differ on a number of key points. For instance, the
frequency decomposition used here is significantly more involved than that used in [I], owing
to additional complications which arise when working in R* rather than R3. Furthermore, whilst
decoupling plays an important role in the current paper, the analysis in [1] relies on square function
estimates. One useful feature of decoupling (as opposed to the use of square functions) is that
decoupling inequalities are readily iterated. We make use of this fact in a fundamental way when
decomposing the operator with respect to the different frequency cones.

1.1. Corollaries. Theorem 1.1 has a number of consequences which follow immediately from
known arguments.

Eztension to finite type curves. Using arguments from [17], one can show that Theorem 1.1 implies
bounds for a more general class of curves. We say a smooth curve v: I — R" is of finite mazimal
type if there exists d € N and a constant ¢ > 0 such that

d
D AD(), O = colé]  forallsel, £ eR™ (1.4)
j=1

For fixed s, the smallest d for which (1.4) holds for some ¢y > 0 is called the type of v at s. The
type is an upper semicontinuous function, and the supremum of the types over all s € I is referred
to as the mazimal type of ~.

Corollary 1.3. If v: I — R* is of mazimal type d € N and max{6,d} < p < o, then
HAvf”L{’/p(R‘l) Spx Hf”LP(R‘*)-

2In particular, the curve is no longer a Salem set.



SOBOLEV IMPROVING FOR AVERAGES OVER CURVES 3

This result is sharp up to endpoints (for further discussion of endpoint cases, see §3.6) regarding
the range of p for which the regularity of order 1/p holds. In the range 2 < p < max{6,d}, the
inequalities resulting from interpolation with the L?(R%) — L% / d(R4) estimates are also sharp, up
to the regularity endpoint, for d > 6 and the non-degenerate d = 4 case; for d = 5 one expects,
however, better bounds to hold in this range (see Figure 3.4). There are also natural extensions of
Conjecture 1 and Proposition 1.2 which deal with finite maximal type curves in higher dimensions:
see §3 below.

Endpoint lacunary mazimal estimates. For the measure p., introduced above, define the family of
dyadic dilates u,"; for k € Z by

k
</’L'yv f> = <IU"Y7 f(2k : )>
and consider the associated convolution operators Aﬁ f= ,uﬁ # f. If v is of finite maximal type,

then a well-known and classical result (see, for instance, [9]) states that the associated lacunary
maximal function

M, f = sup | AL f|
keZ

is bounded on LP for all 1 < p < oo. A difficult problem is to understand the endpoint be-
haviour of these operators near L!. By an off-the-shelf application of the main theorem from [15],
Corollary 1.3 implies an endpoint bound for M., in the n = 4 case.

Corollary 1.4. If v: I — R* is of finite mazimal type, then the lacunary mazimal function M.,
maps the (standard isotropic) Hardy space H'(R*) to LV (R%).

In particular, by [18, Theorem 1.1], Corollary 1.4 follows from any LP — L¥ Ip bound for the
associated averaging operator A, for 2 < p < oo (that is, one does not require L — Lﬁ’ I for the

sharp range of p for this application). Note that, prior to this paper, no such bounds LP-Sobolev
bounds were known for n > 4; thus the question of the H!(R") to L*(R") boundedness of
lacunary maximal associated to finite maximal type (or even non-degenerate) curves remains open
for n > 5.

Outline of the paper. This paper is structured as follows:

e In §2 we discuss a simple reductions to a class of model curves.

e In §3 we derive necessary conditions for LP-Sobolev improving inequalities for our averaging
operators. In particular, we establish Proposition 1.2.

e In §84-6 we present the proof of Theorem 1.1.

e In §7 we discuss certain decoupling inequalities used in the proof of Theorem 1.1.

e There are three appendices which deal with various auxiliary results and technical lemmas
used in the main argument.

Notational conventions. Given a (possibly empty) list of objects L, for real numbers A,, B, > 0
depending on some Lebesgue exponent p or dimension parameter n the notation A, <; B,
A, = Or(B,) or B, 21, A signifies that A, < CB,, for some constant C' = Cf,,,, > 0 depending
on the objects in the list, p and n. In addition, A, ~1, B, is used to signify that both A, <1 B,
and A, 21, By hold. Given a, b € R we write a A b := min{a, b} and a v b := max{a, b}. The length
of a multiindex « € N} is given by |a| = X" | ;.
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2. REDUCTION TO PERTURBATIONS OF THE MOMENT CURVE

A prototypical example of a smooth curve satisfying the non-degeneracy condition (1.2) is the
moment curve v,: R — R™, given by
2 n

s s
Yo(s) := (S’E"”’E)

Indeed, in this case the determinant appearing in (1.2) is everywhere equal to 1. Moreover, at
small scales, any non-degenerate curve can be thought of as a perturbation of an affine image of
Y. To see why this is so, fix a non-degenerate curve v: I — R™ and ¢ € I, A > 0 such that
[0 — A\,0 + A] € I. Denote by [y], the n x n matrix

o = [1D(0) - 7™ (0)],

where the vectors ’y(j)(a) are understood to be column vectors. Note that this is precisely the
matrix appearing in the definition of the non-degeneracy condition (1.2) and is therefore invertible
by our hypothesis. It is also convenient to let [y], \ denote the n x n matrix

[V]o =[] - Da, (2.1)

where D), := diag(},...,\"), the diagonal matrix with eigenvalues A\, A?,...,A". Consider the
portion of the curve v lying over the subinterval [0 — A, o + A]. This is parametrised by the map
s+ (o + As) for s € [—1,1]. The degree n Taylor polynomial of s — (o + As) around o is given
by
s = 5(0) + [V]on - 70 (s), (2.2)

which is indeed an affine image of 7,. Furthermore, by Taylor’s theorem, the original curve -
agrees with the polynomial curve (2.2) to high order at o.

Inverting the affine transformation z — (o) + [v]sa -  from (2.2), we can map the portion of
v over [0 — A,0 + A] to a small perturbation of the moment curve.

Definition 2.1. Let v € C"*(I;R") be a non-degenerate curve and o € I, > 0 be such that
[0 — A\, 0+ A] S I. The (0, )\)-rescaling of 7y is the curve v, € C"1([—1,1];R™) given by
You(s) == [V, 5 (v(0 + As) = ~(0)).
It follows from the preceding discussion that
Yo (s) = Yo(s) + [V 2Er.on(5)

where &, ; \ is the remainder term for the Taylor expansion (2.2). In particular, if v satisfies the
non-degeneracy condition (1.2) with constant ¢g, then

Nox = Yollensi—rapmmy S €5 AV Gns1(ry-

Thus, if A > 0 is chosen to be small enough, then the rescaled curve 7, ) is a minor perturbation
of the moment curve. In particular, given any 0 < § < 1, we can choose A so as to ensure that
vox belongs to the following class of model curves.

Definition 2.2. Given n > 2 and 0 < § < 1, let 8,(0) denote the class of all smooth curves
v: [=1,1] = R™ that satisfy the following conditions:

i) 7(0) =0 and Y (0) = & for 1 < j < n;

i) |y — Yol emtr(j=1,17) < 6-
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Here €; denotes the jth standard Euclidean basis vector and

Wlenng = max suplyU(s)|  for all e C(IR™).
I<jsn+l g7

Given any v € &,(d), condition ii) and the multilinearity of the determinant ensures that
det[v]s = det[vo]s + O(d) = 1 4+ O(0). Thus, there exists a dimensional constant ¢, > 0 such that
if 0 < d < ¢y, then any curve v € &,,(d) is non-degenerate and, moreover, satisfies det[y]s = 1/2.
Henceforth, it is always assumed that § > 0 satisfies this condition, which we express succinctly
as 0 <0 « L.

Turning back to the Sobolev improving problem for the averages A,, the above observations
facilitate a reduction to the class of model curves. To precisely describe this reduction, it is useful
to make the choice of cutoff function explicit in the notation by writing A[y, x] for the operator
A, as defined in (1.1).

Proposition 2.3. Let v: I — R™ be a non-degenerate curve, x € CP(R) be supported on the
interior of I and 0 < 6 « 1. There exists some v* € &,(9) and x* € CL(R) such that

1AL, x] “LP(RH)—»L&(R”) ~,X0,p,0 ||A['Y*7X*]|‘LP(R")—>L£(R")
for alll1 <p <o and 0 < a < 1. Furthermore, x* may be chosen to satisfy supp x* < [—6,4].

Proof. The proof follows by decomposing the domain of v into small intervals and applying the
rescaling described in Definition 2.1 on each interval. This decomposition in s induces a decompo-
sition of the derived operator (1 — A)*2A[y, x]. The upper bound then follows from the triangle
inequality and the stability of the estimates under affine transformation (together with a simple
pigeonholing argument).

The proof of the lower bound is more subtle since one must take into account possible cancel-
lation between the different pieces of the decomposition. To get around this, we observe that

1ALy, xolll 2o ®r)— 22 @y Svixo 1ALV X2] 2o ey 22, (R (2.3)

holds whenever xg, x1 € C2°(R) are supported in I and yi(s) = 1 for all s € supp xo. Once this is
established, it is possible to localise in s and rescale to deduce the desired bound.
To prove (2.3) note, after possibly applying a translation and a dilation, one may write

Alv, X0l f /fa:— )Xo ©v(s)x1(s)ds
where the function xo € CP(R") is supported in [—7, 7|". Consequently, by performing a Fourier
series decomposition,
Xoo(s) = Z akel@ k) o= ilz=7(s),k)

(2 keZ”
where the sequence (ag)gezn of Fourier coefficients is rapidly decaying. Thus, if Modj, denotes the
modulation operator Mody, g(x) := ei<m’k>g( ), then

Al xol f(z) = > ak - Mody o Aly, x1] o Mod_ f().
keZ™

(277
By analytic interpolation, it follows that

IModg| 1z ()2 mny < (1 + [K[)* forall0 < a<1
and therefore

JAD, X0l ez ey < 5 larl (1 + D™ - [Aly, xa] o Mod_ £ 12 n)
keZm

S.x0 HA[%XI]HLP(Rn)—»Lg(Rn)“f”Lp(Rn),
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FIGURE 1. Conjectured range of A,: LP(R™) — L% (R™) boundedness for v non-

degenerate. The inner triangle follows from the elementary L? estimate. The goal
is to establish the LP(R") — L¥ (R") bound at the ‘kink’ point p., = 2n — 2 (or,

1/p
equivalently, pl, = %Z:g)
using the rapid decay of the Fourier coefficients. O

As a consequence of Proposition 2.3, it suffices to fix §o > 0 and prove Theorem 1.1 and Propo-
sition 1.2 in the special case where v € $4(dy) and supp x € Iy := [—dp,dp]. Thus, henceforth,
we work with some fixed &g, chosen to satisfy the forthcoming requirements of the proofs. For the
sake of concreteness, the choice of g := 10719 is more than enough for our purposes.

3. NECESSARY CONDITIONS

3.1. General L — L% estimates. If v: I — R" is of maximal type d, then the van der Corput
lemma shows that the Fourier transform of any smooth density p. on v satisfies

[ ()] S (L4 [€) Y4 (3.1)
This readily implies that
| Ay fll 2

2 @) Sy [flLz@n)- (3.2)
Consider the case where v is non-degenerate, so that d = n. By interpolating against (3.2),

Conjecture 1 formally implies that A, maps LP to L% for all p > 2 and

a < aer(p) := min {%(% + ;), ;}, (3.3)
with the equality case also holding in the restricted range p > 2n — 2. It is an interesting question
what happens at the endpoint in the range 2 < p < 2n — 2.

The range of conjectured bounds is represented in Figure 1. The two constraints appearing in
the definition of the critical regularity exponent ae,(p) agree precisely when p corresponds to the
critical Lebesgue exponent

Per 1= 2n — 2,
which manifests as a ‘kink’ in the LP-Sobolev diagram.

By a simple scaling argument (see, for instance, [17, pp.81-82]), Conjecture 1 further implies
bounds for A, under a finite type hypothesis. In view of Corollary 1.3, it is reasonable to conjecture
the following.

Conjecture 2. If v: I — R" is of mazimal type d, then the operator A, maps LP to L% for all
p =2 and

a < aer(d; p) := min {acr(p), 2} (3.4)
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FIGURE 2. Conjectured range of A,: LP(R") — L%(R"™) boundedness for v of
maximal type d. The upper diagram corresponds to d < 2n — 2 whilst the lower
diagram corresponds to d > 2n — 2.

with strict inequality if min{2n — 2, d} < p < max{2n — 2, d}.
The range of conjectured bounds is represented in Figure 2.
Remark. Using the fact that (I — A)*/2: LP | 5(R") — LE(R™) is an isomorphism together with a

duality argument, any L — L& estimate for A, immediately implies a corresponding J Lg
estimate.

The condition « < 1/d is clearly necessary. Indeed, by duality and interpolation, any LP — Lk
estimate implies an L? — L2 estimate for the same value of a. However, a slight refinement of
(3.1) shows that the L? estimate (3.2) is sharp in the sense that the regularity exponent on the
left-hand side cannot be taken larger than 1/d.

3.2. Band-limited examples. The remainder of this section discusses the necessity of the con-
ditions (3.3) and (3.4). To begin, given A > 0, consider the family of band-limited Schwartz
functions

Zy:={feSMR") :supp f  {£e R™: /2 < [¢] < 2M\}}.
By elementary Sobolev space theory, the desired necessary conditions are a consequence of the
following proposition.

Proposition 3.1. If v: I — R™ is a smooth curve satisfying the non-degeneracy hypothesis (1.2)
and p = 2, then

sup {| 4, florn) : S € L2 A Zn, | lmaqmn) = 1} Zpy A0,
This directly implies Proposition 1.2 and, moreover, shows that the (p, a)-ranges in (3.3) and

Conjecture 2 are optimal up to endpoints.

31f ~ is finite type curve, then the points s for which the type of v at s is strictly larger than d are isolated.
Consequently, any necessary condition for the non-degenerate problem is automatically a necessary condition for
the finite type problem. The necessity of the additional constraint « < 1/d is discussed in the previous subsection.



8 D. BELTRAN, S. GUO, J. HICKMAN, AND A. SEEGER

Proposition 3.1 is based on testing the estimate against two examples, corresponding to the two
constraints inherent in the minimum appearing in the definition of acyit(p).

3.3. Dimensional constraint: « < 1/p. The condition a < 1/p is well-known and appears to
be folkloric; in lieu of a precise reference, the details are given presently.

Lemma 3.2. If v: I —» R" is a smooth curve and p = 2, then
sup {| Ay fllony : f € LP(R™) A 25, | flony = 1} Zpoy AP

Proof. Since the operator A, is self-adjoint and commutes with frequency projections, given 1 <
p < 2 it suffices to show

sup {4, floon : £ € LP(R™ 0 2, | fllinny = 1} Zpo A7

Fix 8 € C®(R") a real-valued even function with (inverse) Fourier transform  satisfying 3(0) =
1 and
supp S < {€eR™:1/2 < |¢] < 2. (3.5)
In addition, let ¢» € C(R™) be non-zero, non-negative and supported in a ball centred at the
origin of radius ¢, where 0 < ¢ < 1 is a sufficiently small constant (independent of \) chosen to
satisfy the requirements of the forthcoming argument. With these bump functions define

fi=(Br-1)" %y
where 8y-1(€) := B(A71E) and ¥y (z) := ¥(A\x). The condition (3.5) implies f € LP(R") n Z),
whilst direct calculation shows that

1 £l () ~ AP (3.6)
By a simple computation, A, f = K A s by where

K@) = A" [ A = 5(5) x(o)ds
R

The key claim is that, provided 0 < ¢ < 1 is chosen sufficiently small (independently of \), the
pointwise inequality

K* s« y(z) 2 271 for all z € N y-1(7) (3.7)
holds, where A -1(7) denotes the cA~!-neighbourhood of the curve

{7(s) : s € supp x}.
To see this, choose ¢ sufficiently small so that § is bounded away from zero on a ball of radius 10¢
centred at the origin. If x € N -1(7), then there exists some sy € supp x such that
|z —y — y(s)] < 10eA™ whenever |s — so| S, A7 and |y| < A7,
from which (3.7) follows.
Combining (3.6) and (3.7), one concludes that

. 1y (n—1)/ /
sup [ Ay fllze@ny _ AT r_ AU,

feLP(R)nZy Iflze@ny A—n/p
as desired. -

Remark. More generally, suppose Ay, is an averaging operator defined as in (1.1) but now with
respect to ¥ a (regular parametrisation of a) surface in R™ of arbitrary dimension. Then

sup {| As fllony : £ € IP(R™) A Zx, | fliony = 1} Zps AP,

This general necessary condition follows from the proof of Lemma 3.2 mutatis mutandis. Further
generalisations hold for appropriate classes of variable coefficient averaging operators: see, for
instance, [3].
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3.4. Fourier decay constraint: o < %(% + 1%) Establishing the second condition is more

involved. Here, in contrast with Lemma 3.2, the non-degeneracy hypothesis (1.2) plays a role via

certain refinements of the Fourier decay estimate (3.1).
Recall the desired bound.

Proposition 3.3. If v: I — R™ is a smooth curve satisfying the non-degeneracy hypothesis (1.2)
and p = 2, then

1
sup {| Ay flrr@n) : f € LP(R") 0 25, [ flion) = 1} Zpy AT

This conclusion was shown in three dimensions by Oberlin and Smith [14] for the model example
of the helix in R3, ¢ + (cost,sint,t), by using DeLeeuw’s restriction theorem and an analysis of a
Bessel multiplier in R?. Here the more general statement in Proposition 3.3 is shown by combining
a sharp example of Wolff [22] for /P-decoupling inequalities with a stationary phase analysis of the
Fourier multiplier ji- .

The proof of Proposition 3.3 is broken into stages.

1
+;)‘

—
N

The worst decay cone. At any given large scale, the decay estimate (3.1) is only sharp for &
belonging to a narrow region around a low-dimensional cone in the frequency space. To prove
Proposition 3.3, it is natural to test the LP-Sobolev estimate against functions which are Fourier
supported in a neighbourhood of this ‘worst decay cone’.

By Proposition 2.3 we may assume without loss of generality that v € &,(dy) for some small
0 < dp « 1 and that the cutoff x in the definition of A, is supported in Iy = [—dp,do]. In view
of the van der Corput lemma, the worst decay cone should correspond to the & for which the
derivatives (yU)(s),€), 1 < j < n — 1, all simultaneously vanish for some s € Iy. In order to
describe this region, first note that

_ 0 _
<7(n 2 (30)7£O> =0 and %<7(n 2 (8)7£> ZZZO =1
=<c0
for (so,&) = (0,&,), by the reduction y)(0) = &; for 1 < j < n. Consequently, provided the
support of x is chosen sufficiently small, by the implicit function theorem and homogeneity there
exists a constant ¢ > 0 and a smooth mapping

1 2 — I, where Z:= {§ = (glagn) € Rn\{o} : |€/| < C|§n|}7

such that s = (£) is the unique solution in I to the equation (y(*~1(s),£) = 0 whenever £ € Z.
Note that 6 is homogeneous of degree one.
Further consider the system of n equations in n + 1 variables given by

Y9(s),&)=0 forl<j<n-—1, (3.8)
& = 1.
Again, by the reduction /) (0) = €; for 1 < j < n, this can be solved for suitably localised & using
the implicit function theorem, expressing s, &1, ... &,—2 as functions of &,_1. Thus (3.8) holds if
and only if
i = TLi(&n—-1), 1<i<n-—2,
3 (§n—1) (3.90)
s = 0(F1(§N—1)7 o 7Fn—2(§n—1)7 §H—17 1)7
for some smooth functions I';, i = 1,...,n — 2 satisfying I';(0) = 0. On I we form the R™-valued
function 7 — I'(7) with the first n — 2 components as defined in (3.9a) and
Lpoi(7) :=, Lp(r) =1 (3.9b)

With this definition, the formulee in (3.9a) can be succinctly expressed as

§=T(&-1), s=00T(&-1).
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Moreover, the ‘worst decay cone’ can then be defined as the cone generated by the curve I', given
by

C:={A(r): A>0and 7€ I}.

Remark. For the model case v(s) = X" f—:f?z one may explicitly compute that

n n z
; (n—1)
The Wolff example revisited. In analogy with the example in [22], here we consider functions with

Fourier support on a union of balls with centres lying on the worst decay cone C. To this end,
let € > 0 be a small dimensional constant, chosen to satisfy the forthcoming requirements of the
argument, and

NN :=Zn{seR:|s| <eA/"}.
The centres of the aforementioned balls are then given by

€ = AL(wA™Y")  for all v e M(N). (3.10)

Fix n € CP(R") satisfying n(¢) = 1if |€] < 1/2 and n(¢) = 0if || = 1. Let 0 < p < 1 be
another dimensional constant, again chosen small enough to satisfy the forthcoming requirements
of the argument, and define Schwartz functions g, for v € M. (A) via the Fourier transform by

(&) = n(A T (€ - ). (3.11)
We consider randomised sums of the functions (3.11). In particular, set
g°(z) := Z ry(w)gy(z) for w e [0, 1], (3.12)
veM(N)

where {r,}2; is the sequence of Rademacher functions. We claim

1—14 L
/gmmw) ), (3.13)
To prove this we apply Fubini’s theorem and Khinchine’s inequality (see, for instance, [19, Ap-
pendix D]) to see that the left hand side is (3.13) is equal to
1/p 1/2
H / 91" dw) Le®n) H( ‘g"P) Le(R")
veN:(N)

The right-hand side of the last display is equal to

H( 2 I/\p"ﬁ(,\l/np,”g)lﬂ

veN:(N)

1/2 n - n
= [# )]0 ) | oy

LP(R™)

~ >\2n 1—*’
which yields (3.13). The above estimates depend on p , but since this parameter is chosen to be
a dimensional constant (independently of A) this dependence is suppressed. Also note that so far
the argument is independent of the choice of the &,.
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Asymptotics. The next step is to study the behaviour of the multiplier i, near the support of the
gv- The key result is Lemma 3.4 below, which relies on the asymptotics of ji, near the worst decay
cone and the observation that the functions g, with the choice of £” as in (3.10) are supported
near that cone. R

Set gy, (€) :=nr (A" Vp1(€ — €¥)) where i, € CP(R") is such that 7, (&) = 1 for |¢] < 1 and
n4+(§) =0 for |£] > 3/2, so that Gy =G+ - v Let

$(§) == (v 0 0(¢),&). (3.14)

Lemma 3.4. If e, p > 0 are chosen sufficiently small, then for all A > 1 and v € MN.(\) the
identity

fin (§) = e m(€)
holds on supp g+, where

i) [m(&)| 2 A7V for & € supp gy v
i) The function a, := m ™! - J+,v satisfies

|02a, (&) < CoXT1D/m - for all e N,

The proof, which is based on the stationary phase method and, in particular, oscillatory integral
estimates from [0], is postponed until §3.5 below.

Lower bounds for the operator norm. For each v € M. (\) define f, by

¢ . gu(f)
18 =

and consider the randomised sums
fe(x) = Z ry(w) fu(x) for w e [0,1].
veN:(N)

Note that, by Lemma 3.4, the f“ are well-defined smooth function with compact support (and
with bounds depending on \). Furthermore, if g* is the function defined in (3.12), then

— A f¥. (3.15)

We proceed to estimate the LP norm of f“, uniformly in w.
We have f, = K, * g, where the kernel K, is given by

T o, CEO O () e
1,

K,(x) :=

By Lemma 3.4 one may write ji, (€)™ g4 ,(&) = €¢®a, (£) where a, is supported where |¢ —£¥| <
2p\1™ and satisfies ogay(§) = Oo\(=lad) /”) Setting
£,(6) 1= 6(6) — 4(€") — CeoE), € — €,
) (3.16)
it follows that
fir (€)1 0 (6) = ") =K@ E=ED 8 (O g ().
Applying a change of variable,

K (x) _ (Y )+ (€Y)) ( /\) / ei</\1/n(m_wu)7§>ei51,(§V+>\l/n§)ay(£l/ + Al/ng) df
2m)" Jan
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By the homogeneity of ¢, it follows that |8?eig”(§y+Al/n£)| <o 1 for all multiindices o € Nij. On
the other hand, Lemma 3.4 implies that

/ |08ay (& + AV"E)|dE <o V™ for all a e Nj.
Rn
Repeated integration-by-parts therefore yields
1K, (2)] sy XD/ 4 APz —2¥)™N  for all N e N

Consequently, the pointwise inequality
|f,/(117)| < )\(n-‘rl)/n(l + )\l/n|l, o ZL‘V|)_N < )\(n-‘rl)/n Z 2—€NHBZ)\($)

£=0
holds with By, 1= {z e R" : [z — 2"| < 20X~} Hence,
w (n+1)/n —(N
1f<) e @ny < A Z 2 H Z Ipy, . for all w e [0,1]. (3.17)
£=0 veNMe ()

To estimate the terms of (3.17) for 2¢ > eA\/" use the immediate bound

IR

veN:(N)

< .9ln/p\=1/p ~ 9ln/py1/n—1/p
oy S FIE) 27X < 900y .

For 2¢ < eA'/" this may be improved upon using a separation property of the z: namely,

2V — 2’| 2 AV =) (3.18)
provided the parameter £ > 0 is chosen sufficiently small (independently of \). The property
(3.18) implies that the balls By, BY, are disjoint for |[v— /| 2 2°. Assuming (3.18) for a moment
and taking 2¢ < eA\}™, we obtain

2t
)y <3| X g
» n B m-+1i » n
veN.(N) LR meZ ex ILP(R™)
|m|<e2—¢AL/n
0_
<2 1 ) 1p
~ Z ( Z HHBQ%H‘ LP(R”)>
. [P\
=0 mEeZ

|m|<e2—¢AL/"
< 26(Al/n2—6)1/p(2£)\—1/n>n/p.
Applying the preceding bounds to estimate the terms in (3.17) and choosing N > n —n/p, this
leads to the uniform estimate

sup [ £ zony < AT/, (3.19)
wel0,1]

Thus, one concludes from (3.15), (3.13) and (3.19), together with the fact that the f* are Fourier
supported where || ~ A, that
w 1/
HA'nyLp(Rn) - (fo HAvf HLP R) dw) P fo lg* HLp Rn) dw
FELPNZ) HfHLP(]R”) - SuPelo,1] Hf HLP (R™) SUPge[0,1] Hf HLP(R”)

)1/p

~ )

which is the desired bound stated in Proposition 3.3.
It remains to verify the crucial separation property (3.18). Recall from (3.16) and (3.10) that
V= —6§¢()\F(V)F1/ ”)) Thus, by homogeneity, one wishes to bound

2’ — 1" = —[(3ed) o T(WA™Y™) — (0¢) o (W A™Y™)]. (3.20)
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In particular, it suffices to show that

L (20) oT(r) = —61 + (7). (321)

Indeed, applying Taylor’s theorem to (3.20) and using (3.21) to bound the linear term yields
v ! v—v v+ ) |v—v' v—uv v—v'
r —X :4)\1/71 €1+O((| ‘ ‘)\2‘/n| |): )\1/” ’61+O<5|>\1/n‘>
for all v,/ € M. (A\). Choosing € > 0 sufficiently small so as to control the error term establishes
(3.18).
Turning to the proof of (3.21), we have 0¢p(§) = v 00(§) + (' 06(£),£)0:0(§) by the definition
of ¢ from (3.14). Since (7' 0 0(&),&) = 0 when & = I'(7), this yields

(e¢) o T'(7) = 7 0 (I'(7))

and, consequently,
L (20) oT(r) = o/ 0 6(T(7)) - Ceb(T (), (7).

By the initial reductions, 7\/)(0) = & for 1 < j < n, and so
d S
77 (069) o I(r) = (20(I'(0)), T"(0)) - & + O(7). (3.22)

Thus, to prove (3.21) it suffices to show that the inner product in the above display is equal to
—1. Differentiating the defining equation (y("~1 0 §(¢),£) = 0, one deduces that

%00 = s 0

Since, by uniqueness in (3.9a) and (3.9b) together with the initial reductions, I'(0) = €, and
6(€,) = 0, it follows that (0¢f) o I'(0) = —€,—1. On the other hand, from (3.9b) it is clear that
(€,-1,T"(0)) = 1. Applying these observations to the formula in (3.22) concludes the proof.

3.5. Proof of Lemma 3.4. It remains to prove Lemma 3.4. To this end, we recall an asymptotic

expansion from [6], based on the following formula:
0
/ e ds = ap A" forn=2,3,... and A > 0, (3.23)
—00

where «, is given by

n (3.24)

21 (L) exp(i ) if n is even.

B {gr(l)sm(“l;)”) if n s odd,

n =
The derivation of (3.23) relies on contour integration arguments, whilst the formula itself yields
asymptotic expansions for integrals [ e?" x(s) ds with x € CF: see, for instance, [20, VIIL.1.3]
or [13, §7.7]. Similar asymptotic expansions remain valid under slight perturbation of the phase
function s — s", as demonstrated by the following lemma proved in [6]. We use the notation

S ”)
lglemry := jmax supger|g ().

VA

Lemma 3.5 ([0], Lemma 5.1). Let 0 < r < 1, I = [-r,7], I* = [-2r,2r] and let g € C*(I*).
Suppose that
1

r<
10(1 + | gllez(r#)
and let n € CL(R) be supported in I and satisfy the bounds

[nlleo + 7'k < Ao, and 7] < As.
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Let n = 2, define
n—2

I(n,w) := /Rn(s) exp (M(Z szj + 5"+ g(s)s”“))ds

j=1

and let oy, be as in (3.24). Suppose |w;| < SAU=m/n 5 =1 ... n—2. Then there is an absolute
constant C such that, for A > 2,

1L (1, w) — 0(0)ap A~V < C[AgA Y™ + A1 + B, log \)];
here By :=1 and By, := 0 for n > 2.
Lemma 3.4 is obtained via a fairly direct application of the above result.
Proof (of Lemma 3.4). Taylor expand the phase (v(s), §> with s = 0(§) + h to obtain
pntl

H(O(E) + h), &) = B(& +Zu] +un+1(§h)m

where

uj(€) == (Y9 0 0(€),&), for 1< j<n

1
wa(€) = [ D0 =06 + th). €
Recall that u,—1(§) = 0 by the definition of §(§), whilst u,(§) ~ |{] ~ X for || < ¢&,. Thus,

writing
() = e Om(e)
as in the statement of the lemma, it follows that the function m is given by
hn+1

m(€) ::/Re—i(Z?_lu]-(f)  bun g (€, h)(”+1)')x(9(f)—|—h)dh.

Thus, defining

= Y wi(©h + 1" + g(& h)R"H! (3.25)

oy Lou(§) an _ 1 upa(§h)
w;(§) : i (e d g hn): CES NG

one may succinctly express m as

m(e) = /R ¢~ O¥ER, (9(&) + h)dh.

We now turn to proving the bounds on m stated in Lemma 3.4.

where

i) The desired pointwise lower bound on m follows from a direct application of Lemma 3.5. In
particular, by the definition of the £ we have w;(£”) = 0 for 1 < j < n — 1 and therefore

wi ()] < pAEand Jg(€,h)| S 1 for € € supp g+ (3.26)
Thus, provided p and ¢ are chosen small enough, Lemma 3.5 can be applied to show that
Im(€)| 2 A"V for all € € supp gy, (3.27)

as desired.
i) It remains to show that

08 [m ™+ G40 ] (€)] Sa AT for all e N (3.28)
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The derivative og'm(§) can be expressed as a sum of functions of the form

n+1

s e
mial€) = [ e S OT Pn C G e ) dh, o+ k>

where b5 € C° (R™\{0} x R) and homogeneous of degree —d in the &-variable. The key claim is
Img 4(&)] Sa A~ (+R)/n—d for € € supp g4 .- (3.29)

Indeed, once (3.29) is established it can be combined with (3.27) and the Leibniz rule the deduce
the desired bound (3.28).
The asserted bound (3.29) follows from

‘ /R e un(OWER) (€, h)h dh| < A~UFRIM (3.30)

where x; € C®°(R™\{0} x R) is homogeneous of degree zero with respect to ¢ and vanishes unless
|h| < e. To prove (3.30) we form a dyadic decomposition of the integral. Fix (y € C§°(R) such
that (o(h) = 1 for |h| < 1/2 with supp(¢ < [~1,1]. For £ € N set o(h) = (o(27%h) — (27 1h)
and define

Joa(€) = /R e~ OVEN (AP Ry, (€, h))h* dh. (3.31)

By just a size estimate we have |J;x(€)] < (2°A~Y/")** which we use for £ < C. For larger £ we
use integration-by-parts.

Recall that the assumption € supp g4, implies the bounds (3.26). Consequently, on the
support of the integrand in (3.31), the dominant term in the formula for ¥ as given in (3.25) is
h"™. Moreover,

0
—W(Eh ‘ ~ 2€>\—I/n n—1
()| ~ 2N
and, similarly,
o .
S W(E )| < min{(2A7/) 1,

Also, it is not difficult to show that

' 1/n K
| [ (g, m)ht]
Using these bounds we derive, by N-fold integration-by-parts,

‘Jé,)\(g)‘ <N (26)\_1/n)1+52—€nN
and, by summing in /¢, obtain (3.30). ]

< (2€>\71/n)n7i‘

3.6. The Christ example. We close this section by making an observation regarding an endpoint
case. We may rule out L4(R") — L‘f / 4(R"™) boundedness under the maximal type d hypothesis for
d = 3. Note that this corresponds to the critical vertices in the lower diagram in Figure 2. To
show the failure of the estimate, suppose that for some ty with x(t9) # 0, there is a unit vector u
with (u,v®)(tg)) = 0 for k =1,...,d — 1 and (u, 74 (ty)) # 0. By a rotation we can assume that
v (to) = & and u = &, the standard coordinate vectors. The LI(R") — L9 ) 4(R™) boundedness is
equivalent with the statement that the multiplier

€[V (g) / SO (1) dt
R

belongs to the multiplier class M%(R™); here v € C®, equal to 1 for large ¢ and vanishing in a
neighborhood of the origin. Since (£2 + £2)1/2¢|¢|~1/¢ belongs to MP(R") for 1 < p < o0 we may
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replace in the display |€]V/¢ with (€2 4 €2)V/2?. Now apply the theorem by de Leeuw [3] on the
restriction of multipliers to subspaces to see that

(€ + )21, 6,0,...,0) / x(B)eDa2008) gy

is a multiplier in M?(R?) which implies the L%(R?) — L9 ) 4(R?) boundedness of the averaging
operator associated to the plane curve (1 (), v2(t)). However the latter statement can be disproved
by using the argument of Christ [7], who considered the curve (t,t).

4. INITIAL REDUCTIONS AND AUXILIARY RESULTS

The remainder of the paper deals with the proof of Theorem 1.1. This section contains some
preliminary results, the most significant of which is the decoupling result in Theorem 4.4 which
lies at the heart of the proof.

4.1. Multiplier notation. From the reduction described in Proposition 2.3 it suffices to consider
v € B4(09) where dy is a small parameter, as described at the end of §2. If f belongs to a suitable
a priori class, then the Fourier transform of A, f is the product of f and the multiplier

() = [ U0 x(s)ds. (4.1)

Recall, again from the reduction described in Proposition 2.3, that we may assume y € CX(R)
satisfies supp x € Iy = [—do, do]-
Given m € L®(R%), define the associated multiplier operator m(D) by

m x) = ! e POm(e) f
(D)f(e) = s [, Omie o) ae

so that, in this notation, Ay = fi,(D). We also define the associated LP multiplier norms

Imare sy == [m(D)| Lr(ra)—rr@sy — for 1 <p < co.

To prove Theorem 1.1, we analyse various multipliers obtained by decomposing (4.1). To this
end, given a € C®(R*\{0} x R), define

mla](€) := /R IO a(E; s)x(5) ds. (4.2)

Any decomposition of the symbol a results in a corresponding decomposition of the multiplier.
We will also use the notation supp ¢a to denote the projection of supp a € R\ {0} x R into R*\{0}.

4.2. Reduction to band-limited functions. Given a symbol a € C®(R*\{0} x R) we perform
a dyadic decomposition in the frequency variable { as follows. Fix n € CZ(R) non-negative and
such that
n(ry=1 ifre[-1,1] and suppn < [-2,2]

and define g¥ € C*(R) by

BH(r) == (27 r) — n(27 1) (4.3)
for each k € Z. By a slight abuse of notation we also let 1, 5 € C®(R?*) denote the functions
n(€) :=n(|¢]) and B*(€) := B*(|¢]). One may then decompose

= cs) - BR (&) fork>1
azkzzoak where a(&;s) :={ Zggi;g(é)ﬁ) fgik:zo ) (4.4)

Theorem 1.1 is a direct consequence of the following result for multipliers localised to some
dyadic frequency band. Here we work with additional absolute constants 0 < d; < dg for 1 < j < 3,
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chosen sufficiently small for the purposes of the forthcoming arguments. In practice, we may simply
take 0; := dp for j = 1,3 and 6 := 58’. It is also convenient to define 4 := 9/10.

Theorem 4.1. Let y € B4(8) and 1 < J < 4. Suppose that a € C*(R"\{0} x R) satisfies

a(&;s)] SanN €] or all o € an € Ny 4.5
ogoNa(¢ ~leTle foralla e N§ and N e N
and
inf [(717)(s), €] = é5]¢ ;
s . . 4.
inf [(/0)(s), ] < 4dyl¢] for1<j< -1 T HEESPRe (46)
S€Elp
If ay, is defined as in (4.4), then
Imfar] s sy Sp 277 (4.7)

for k=1 and p > max{2(J — 1),1}.
The hypothesis (4.6) implies that
(Y9 (s), )] < 8¢ for all § € suppga, s€ lpand 1 < j < J—1. (4.8)
Indeed, suppose sg € Ij realises the infimum in (4.6) and let s € Iy. Then the mean value theorem

implies

Y9 (5), O < |49 (s0), )] + Sup WD (@)|ls — sol€] < 8dol€], (4.9)
€10
using the fact that 0; < dp and the uniform derivative bounds for v € ®4(dp).

Proof of Theorem 1.1 given Theorem 4.1. By the reduction from §2 it suffices to consider v €
®4(dp) and x € CL(R) with supp x € Iy = [—do,dp]. For 1 < j < 4 define the sets
Ns;&n S if1<j<3
N5, & nS3 ifj=4

8 = {f €S inlf KA (5), 6] < 5]-} and Uj:= { ,
SElQ
where Nj; & denotes the J;-neighbourhood of &; and 53 denotes the unit sphere in R, Since
Uj; is an open subset of S3 containing the compact subset clos &}, there exists a smooth function
pj: S3 — [0,00) such that
pj(w) =1 for we clos & and supp pj < Uj.

For 1 < J < 4 define y; € C*(S3) by
J—-1

XJ = (HPj)‘(l_PJ)

j=1
These functions satisfy the following properties:
i) If ¢ € S% and ¢ € supp x 7, then (4.6) holds;
ii) Z§=1 xJ = 1, as functions on S3.
Indeed, to see property i), note that if £ € supp x s, then £ ¢ clos &; which implies the first bound

in (4.6). On the other hand, for 1 < j < J —1 < 3 it follows that £ € U; and so there exists some
&o € & with |£ — &| < d;. Consequently, there exists some sg € Iy such that

[y (50), 1 < (Y9 (s0), €o)| + [79) (s0) 1€ — éo| < 45, (4.10)

which is the second bound in (4.6). For property ii), note that (4.9) can be combined with the
argument in (4.10) to conclude that

sup |[(v)(s),£)| <88y for €eU;, 1 <j<3, and sup[(yW(s),&)| < 5 +4dp for € € Uy

SEIQ SEIO
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Provided 4y is sufficiently small, the non-degeneracy of v € &4(Jp) implies ﬂ?zl U; = (. Since
2?:1 xj=1-— H?Zl p;j, property ii) follows from the support conditions of the p;.

In view of the above, we may apply Theorem 4.1 with a(§) := xs(&/[¢|) for J = 1,2,3,4 and
sum in J to conclude that

|85(D) Ay £l o rey < 2_k/prHLP(R4) for all k>0 (4.11)

and all p > 6; note that the case £k = 0 trivially follows as A, is an averaging operator. To
pass from the frequency localised estimates (4.11) to genuine LP-Sobolev bounds, one may apply
a Calderén—Zygmund estimate from [16]. This argument is described in the Appendix A: see
Proposition A.2. O

The hypothesis (4.5) implies that H.Fglak(~;s)\|L1(R4) < 1, where .7-"5_1 denotes the inverse
Fourier transform in the £ variable. Consequently, it is not difficult to show that the p = o case
of (4.7) holds for all 1 < J < 4 (see also Lemma C.2). The problem is therefore to deduce the
estimate for p near to max{2(J — 1), 1}.

Note that the proof of the J = 1 case of Theorem 4.1 is trivial. Indeed, here the phase function of
(4.2) does not admit a critical point and the desired result follows by repeated integration-by-parts.

The proof of the J = 2 case of Theorem 4.1 is also straightforward. Suppose v € B4(dy) and
a € C®(R*\{0} x R) satisfies the hypotheses Theorem 4.1 for J = 2, with &; := Jp and d := 63.4
Note, in particular, that

[V (5), 1 = 6l¢] for all (& s) € suppg a x Io.

Thus, the van der Corput lemma (see, for instance, [20, Chapter VIII, Proposition 2]) implies

—k
Imlar]|are ey = |mlae]|pomey < 2742
On the other hand, by the triangle inequality, Fubini’s theorem, translation-invariance and integration-
by-parts (see Lemma C.2),

||m[ak]HM°C(R4) < Hf_lak||Ll(R4) < 1.
Interpolation yields
Imlar]am gy < 2~ k/p for all 2 < p < o0,
which concludes the proof for the J = 2 case.

From now on, we focus on the J = 3 and J = 4 cases of Theorem 4.1. These are proved in
Sections 5 and 6 respectively. Of these, the J = 4 is the heart of the matter, and its proof is the
main contribution of this paper. Before turning to the proofs, we state some auxiliary results.

4.3. The Frenet frame. At this juncture it is convenient to recall some elementary concepts
from differential geometry which feature in our proof. Given a smooth non-denegenate curve
~v: I — R"™, the Frenet frame is the orthonormal basis resulting from applying the Gram—Schmidt
process to the vectors

(7). ... A"M ()},

which are linearly independent in view of the condition (1.2). Defining the functions®

Rj(s) == (€}(s),ej41(s))  forj=1,....,n—1,

4The choice of 01, 02 is not important for the argument in the J = 2 case, but is kept for consistency.
Note that the k; depend on the choice of parametrisation and only agree with the (geometric) curvature functions

PRRCIORIO)
F(8) = )

if v is unit speed parametrised. Here we do not assume unit speed parametrisation.
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one has the classical Frenet formulae
e (s) = Ri(s)ea(s),
el(s) = —Fi—1(s)e;_1(s) + Ri(s)eir1(s), i =2,...,n— 1,
e (s) = —Fn_1(s)en_1(s).
Repeated application of these formulae shows that
e,gk)(s) L ej(s) whenever 0<k<|i—jl
Consequently, by Taylor’s theorem

[(ei(s1), ej(52))| Sy |51 — 8ol for 1 <4i,j7 <nand sy,sp €. (4.12)
Furthermore, one may deduce from the definition of {e;(s)}}_; that
17D (51),€j(52))] Sy |51 — 52|V 7DVO for 1 <i,j7 <nand sy,s9 € 1. (4.13)

In this paper, much of the microlocal geometry of the operator A, is expressed in terms of the
Frenet frame.

4.4. A decoupling inequality for regions defined by the Frenet frame. Let v: I — R” be
a non-degenerate curve.

Definition 4.2. Given2 <d<n—1and 0 <r <1, for each s € I let m4_1(s;r) denote the set
of all £ € R™ satisfying the following conditions:

Kej(s), Ol <r™'7 for1<j<d, (4.14a)
1/2 < [(eat1(s), ) < 1 (4.14b)
[Kej(s),)| <1 ford+2<j<n. (4.14c¢)

Such sets wq_1(s;7) are referred to as (d — 1,r)-Frenet bozes.

Definition 4.3. A collection Py_1(r) of (d — 1,7)-Frenet boxes is a Frenet box decomposition for
v if it consists of precisely the (d — 1,r)-Frenet bozes wq_1(s;7) for s varying over a r-net in I.

In some instances it is useful to highlight the underlying curve and write mg_1(s;r) for
mq—1(s;7). The relevance of the d — 1 index is made apparent in Definition 7.4.
Central to the proof of Theorem 1.1 is the following decoupling inequality.

Theorem 4.4. Let2<d<n—-1,0<d«1,0<r<1andPi1(r) be a (d—1,r)-Frenet box
decomposition for vy € &,(5). For all 2 < p<oo ande >0 the inequality

D P (D YR P

mePg_1(r) w€Pq_1(r)
holds with exponent
- if 2<p<dd+1)

—ddEDE2 e gd+1) <p< o

1
2
1 %

alp) =

for any tuple of functions (fw)ﬂepd_l(r) satisfying supp fw c.

This theorem corresponds to a conic version of the Bourgain—-Guth—Demeter decoupling inequal-
ity for the moment curve [5]. Theorem 4.4 can be deduced from the moment curve decoupling via
rescaling and induction-on-scale arguments, following a scheme originating in [17]. The details of
this argument are presented in §7.
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5. THE PROOF OF THEOREM 4.1: THE J = 3 CASE

We now turn to the proof of Theorem 1.1 proper. Recall, it remains to prove the J = 3 and J = 4
cases of Theorem 4.1. Here we present the analysis of the J = 3 case, which essentially mirrors
that of [17]. The present section can therefore be thought of as a warm up for the significantly
more involved argument used to treat J = 4 in §6.

5.1. Preliminaries. Suppose v € &4(dy) and a € CP(R4\{0} x R) satisfies the hypotheses Theo-
rem 4.1 for J = 3, with &y :=: 83 := &y and 5 := §3. Note, in particular, that

{ Y3 (s), )] = dolg|

, ‘ for all (&;s) € suppg a x I, (5.1)
[(70)(s), &)] < 8do¢] for j =1,2 ‘

as a consequence of (4.8). If a := a - B¥, as introduced in §4.2, this implies, via van der Corput’s
lemma with third order derivatives, that

Imlaxl(©)] < 272, (5.2)
Arguing as for J = 2, Plancherel’s theorem and interpolation with a trivial L® estimate yields
||m[ak]HMP(R4) < 27 2k/3p for all 2 < p < 0.

In order to obtain the improved bound |m[ax]| e sy < 27#/P we decompose the symbol aj, into
localised pieces which admit more refined decay rates than (5.2).

5.2. Geometry of the slow decay cone. The first step is to isolate regions of the frequency
space where the multiplier m[a] decays relatively slowly. Owing to stationary phase considerations,
this corresponds to a region around the cone

I':= {f € Suppg a : <fy(j)(s),§> =0, j=1,2, for some s € IO}.

To analyse this region, and the corresponding decay rates for m[a], we make the following simple
observation.

Lemma 5.1. If { € suppg a, then the equation (" (s),£) = 0 has a unique solution in % - Iy.

The above lemma follows from the localisation of the symbol in (5.1) and (4.6) via the mean
value theorem. The details are left to the interested reader (see [!, Lemma 6.1] for a proof using
similar arguments).

Using Lemma 5.1, we construct a smooth mapping 6: supp; a — [—1,1] such that

(y"00(€),6 =0 for all £ € suppg a.

It is easy to see that 6 is homogeneous of degree 0. This function can be used to construct a
natural Whitney decomposition with respect to the cone I' defined above. In particular, let

u(€) := (7 0 0(€),6) for all £ € supp a; (5.3)

this quantity plays a central role in our analysis. If u(§) = 0, then £ € I' and so, roughly speaking,
u(€) measures the distance of £ from T.
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5.3. Decomposition of the symbols. Consider the frequency localised symbols aj, := a - ¥, as
introduced in §4.2. We decompose each aj with respect to the size of |u(£)|. In particular, write

k/3

k/3]
ag = 2 Q0 (5.4)

=0

where |k/3| denotes the greatest integer less than or equal to k/3 and®

ap(§;5)B(27 P u(€))  if0 << [k/3]
ake(&; 8) = ~ : (5.5)
ar (& s)n(27FBlu(e)) if ¢ = [k/3)

The J = 3 case of Theorem 4.1 is a consequence of the following bound for the localised pieces
of the multiplier.

Proposition 5.2. Let 4 <p <6, ke N and e > 0. For all 0 < ¢ < |k/3],

Imlak.e]ll e ey Sep o—k/p—(1/2-2/p—¢)

Proof of J = 3 case of Theorem 4.1, assuming Proposition 5.2. Let 4 < p < 6 and define ¢, :=
1 (% - %) > (0. Apply the decomposition (5.4) and Proposition 5.2 to deduce that

2

[%/3] 0
Imlar]lareay < D Imlarellamsy Sp 2757 ) 27 0220=en) < ok/p,
£=0 =0

This establishes the desired result for 4 < p < 6. The remaining range 6 < p < oo follows by
interpolation with a trivial L® estimate. (|

The rest of §5 is devoted to establishing Proposition 5.2. Before proceeding, it is instructive
to reflect on the rationale behind the decomposition (5.4). A lower bound on |u(&)| ensures that
the functions s — (7/(s),&) and s — (7”"(s),£) do not vanish simultaneously. Quantifying this
observation, one obtains, via the van der Corput lemma, the decay estimate

Im[ar,e] (€)] < 27H/2H2, (5.6)

see Lemma 5.6 below. This improves upon the trivial decay rate (5.2) since ¢ varies over the range
0 < ¢ < |k/3]. Note that ¢ = k/3 corresponds to the critical value where (5.2) and (5.6) agree.
By Plancherel’s theorem, (5.6) implies
[mlan.dlne sy < 275292,

As ¢ increases this estimate becomes weaker. To compensate for this, we attempt to establish
stronger estimates for the M*(R*) norm. This is not possible, however, for the entire multiplier
and a further decomposition is required. The u(§) localisation means that m[ag (] is supported in
a neighbourhood of the cone I'. Consequently, one may apply a decoupling theorem for this cone
(in particular, an instance of Theorem 4.4) to radially decompose the multipliers. It transpires
that each radially localised piece is automatically localised along the curve in the physical space,
and this leads to favourable M *(R*) bounds: see Lemma 5.5 and Lemma 5.7 below.

6The B function should be defined slightly differently compared with (4.3) and, in particular, here g8(r) :=
n(272r) — n(r). Such minor changes are ignored in the notation.
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5.4. Fourier localisation and decoupling. The first step towards Proposition 5.2 is to radially
decompose the symbols in terms of #(§). Fix a smooth cutoff ( € C*(R) with supp¢ < [-1,1]
such that >}, _, (- — k) =1 and write

are(§8) = D ak,(&5)  where all (&) 1= are(9)C(2°0(E) — ). (5.7)

UEZ

Given 0 < r < 1 and s € I, recall the definition of the (1,7)-Frenet boxes 71 (s;r) introduced in
Definition 4.2:

mi(sir) = {€ e R s [(ej(5), )| 7777 for j=1,2, [(ea(s),O)] ~ 1, [(ea(s),&)] s 1}.

Here (ej)?:1 denotes the Frenet frame, as introduced in §4.3. The multipliers ag , satisfy the
following support properties.

Lemma 5.3. With the above definitions,

Suppg al; 0 S ok T1(Sy; 2_5)
for all 0 < € < |k/3| and p € Z, where s, := 27" p.
Proof. For £ € supp, a’,ie observe that

G0 00(€), &) S 2EI0 pri<i<a, [P o0(e),0)] ~ 2

Since the Frenet vectors e; o §(€) are obtained from the 4(*) o §(¢) via the Gram-Schmidt process,

the matrix corresponding to change of basis from (eioe(ﬁ ));l ( @op(e ))z is lower triangular.
Furthermore, the initial localisation implies that this matrix is an O(9) perturbatlon of the identity.
Consequently, provided § > 0 is chosen sufficiently small,

eio0(€),&)] <20 for1<i<d,  [ezo(€). ) ~ 2"
On the other hand, by (5.7) we also have |0(¢) — s,| < 27¢ and so (4.12) implies that
[ei 0 0(€), (s, < [0(€) — s, g 27079

Writing ¢ with respect to the orthonormal basis (ej o0& ))jzl, it follows that

Kej(su), &) < Z [(ei 0 0(), 6)|[(ei 0 0(€), e;(s,))| < 2k~ B=EV0,

Thus, ¢ satisfies all the required upper bounds appearing in (5.8). Provided the parameter § > 0
is sufficiently small, the argument can easily be adapted to prove the remaining lower bound for

(e3(sp),)- O

In view of the Fourier localisation described above, we have the following decoupling inequality.

Proposition 5.4. For all2 < p <6 and € > 0 one has
1/p
| > mlaf )(D <o 2RV (N mfaf J(D) 1)
HEZL

HEZL
Proof. In view of the support conditions from Lemma 5.3, after a simple rescaling, the desired
result follows from Theorem 4.4 with d —1 =1, n =4 and r = 27, U

Lr(R4)



SOBOLEV IMPROVING FOR AVERAGES OVER CURVES 23

5.5. Localisation along the curve. The 6(¢) localisation introduced in the previous subsection
induces a corresponding localisation along the curve in the physical space. In particular, the main
contribution to m[aj, ,| arises from the portion of the curve defined over the interval |s —s,| < 2~
This is made precise in Lemma 5.5 below.

Here it is convenient to introduce a ‘fine tuning’ constant p > 0. This is a small (but absolute)
constant which plays a minor technical role in the forthcoming arguments: taking p := 10~% more
than suffices for our purposes.

For 0 < ¢ < |k/3|, p € Z and € > 0, define

akg 1(&55) 1= ar (& 5)C(2°0(6) — un(p2" ) (5 — 5,)). (5.9)

The key contribution to the multiplier comes from the symbol a‘,j’f) .

Lemma 5.5. Let 2<p <o ande > 0. For all 0 < ¢ < |k/3]|,
Hm[ak’Z — akjé ]HMP(R4) SNep 2N for all N € N.

Proof. 1t is clear that the multipliers satisfy a trivial L®-estimate with operator norm O(2Ck) for
some absolute constant C > 1. Thus, by interpolation, it suffices to prove the rapid decay estimate
for p = 2 only. This amounts to showing that, under the hypotheses of the lemma,

Hm[aké - alli éa ]“LOC(R4) ~N,e 2” kN for all N € N.

Here the localisation of the aj ¢ symbols ensures that
lu(€)] < 28 for all (&;s) € supp (a;ig - aﬁ:és)), (5.10)

where v is the function introduced in (5.3). On the other hand, provided p is sufficiently small,
the additional localisation in (5.7) and (5.9) implies, via the triangle inequality,
ls —0(6)| = p~ 127179 for all (£;5) € supp (ag, — a’,:(ga)). (5.11)
Fix £ € suppg (al 0= O ée)) and consider the oscillatory integral m[al , — a;j’f)](g), which has
phase s — {(y(s),&). Taylor expansion around 0(§) yields

('(8),€) = u(€) + wi(&5) - (s = 0(8))?, (5.12)
('(5),&) = wa(&;8) - (s = 0(6)) (5.13)

where the w; arise from the remainder terms and satisfy |w;(&;s)| ~ 2. Provided p is sufficiently
small, (5.10) and (5.11) imply that the wy(&;5) - (s — 0(€))? term dominates the right-hand side of
(5.12) and therefore

(7' (5),6)] 2 255 — 0(€)[2 for all (& 5) € supp (), — ay”). (5.14)
Furthermore, (5.13),

(
7" (5), &)1 £ 273016/ (s), )1,
(V(s), )] 5 2° 5 27N (), OF - forall j > 3

5.14) and the localisation (5.11) immediately imply

for all (&;s) € supp (a“ — a’,; éa))
On the other hand, by the definition of the symbols, (5.14) and the localisation (5.11),
0 (aty — )€ )] v 2N < 2 ETON 2N /() N for all N €N,
Thus, by repeated integration-by-parts (via Lemma C.1, with R = 2F=3(+25¢ > 1)

|m[ak[ - a’;:éa)](fﬂ SN 9~ (k=30N—2etN for all N e N.
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Since 0 < ¢ < |k/3] < k/3, the desired bound follows. O

5.6. Estimating the localised pieces. The multiplier operators m[afj’és)](D) satisfy favourable

)

L? and L® bounds, owing to the u(¢) and s localisation, respectively.

Lemma 5.6. For all 0 < { < |k/3|, p€ Z and ¢ > 0, we have

Hm[aké ]HM2(R4) < 2 kA2,

Proof. If ¢ = |k/3|, then the desired estimate follows from Plancherel’s theorem and van der
Corput lemma with third order derivatives, as the localisation (5.1) implies

|<’y(3)(5),§>| > ok for all (&, s) € supp aye.
For the remaining case, it suffices to show that

[ (), +270" (), 2 257 for all (& s) € suppajyy”. (5.15)
Here the localisation of the symbol ensures the key property
lu(€)| ~ 2F—2 for all (§;s) € supp a‘,j;f). (5.16)

Indeed, this follows from (5.5) together with the hypothesis 0 < ¢ < |k/3].
By Taylor expansion around 0(¢), one has

((8),6) = w(€) + wi(&8) - (s — 0(€))?, (5.17)
('(s),&) = wa(&;8) - (s = 0()), (5.18)

where the functions w; arise from the remainder terms and satisfy |w;(&;s)| ~ 2% for i = 1, 2.
The analysis now splits into two cases.

Case 1: |s — 0(¢)| < p27¢. Provided p is sufficiently small, (5.16) implies that the u(€) term
dominates in the right-hand side of (5.17) and therefore [(7/(s),&)| = 282,

Case 2: |s — 0(£)| = p2*. In this case, (5.18) implies that [(v"(s),&)| = p2F—.
In either case, the desired bound (5.15) holds. O

Lemma 5.7. For all0 < { < |k/3|, p€Z and e > 0,

()

Hm[aké ]HMOO(R‘*) < g~f(1=e),

Proof. By Lemma 5.3, we have supp, ak = ok . 1 (Sy; 2_3). Consequently, an integration-by-parts
argument (see Lemma C.2) reduces the problem to showing
|VijaZ7£(£)| <y 2~ k=B=a)vON for all 1 < j <4 and all N € Ny, (5.19)
where V,,; denotes the directional derivative in the direction of the vector v; := e;(sy).
Given & € suppg a’,j’ 4> we claim that
2€|v1]>29(£)| <N 2—(k—(3—j)€v0)N and 2—k+2€|v11>fju(£)| <N 2—(k—(3—j)€v0)N (5‘20)

for all N € N. Assuming that this is so, the derivative bounds (5.19) follow directly from the chain
and Leibniz rule, applying (5.20).
The claimed bounds in (5.20) follow from repeated application of the chain rule, provided

(@ 0 0(6), )] 2 2, (5.21a)
[ 0 0(6), )] i 2, (5:21b)
K,Y(K) o 0( )’ 'Uj>| <K 2(3*J)ZV0+K(K*3) (521C)
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hold for all K > 2 and all £ € suppg all:,f' In particular, assuming (5.21a), (5.21b) and (5.21c), the
bounds in (5.20) are then a consequence of Lemma B.1 in the appendix: (5.20) corresponds to
(B.2) and (B.4) whilst the hypotheses in the above display correspond to (B.1) and (B.3). Here
the parameters featured in the appendix are chosen as follows:

g h A B M1 M2 e

,.Y// ,Y/ ok—t | 9k—2¢ 2—k+(3—j)€v0 ot

Uj

See Example B.2.
The conditions (5.21a), (5.21b) and (5.21c) are direct consequences of the support properties of
the af ,. Indeed, (5.21a) and the K > 3 case of (5.21b) are trivial consequences of the localisation

of the symbol aj. The remaining K = 2 case of (5.21b) follows immediately since (y"00(§),&) = 0.
Finally, (4.13) together with the 6 localisation imply

(019 0 0(6), 0] Sk (6) — 5, U710 5 27(G=HO V0
and this is easily seen to imply (5.21c). O
Lemma 5.6 and Lemma 5.7 can be combined to obtain the following LP bounds.
Corollary 5.8. Let 0 < ¢ < |k/3] ande > 0. For all2 <p <

1/p
(2 Imlafs VD)1 gy ) < 27 O
WEL

When p = oo the left-hand (P-sum is interpreted as a supremum in the usual manner.

Proof. For p = 2 the estimate follows by combining the L? bounds from Lemma 5.6 with a
simple orthogonality argument. For p = oo the estimate is a restatement of the L® bound from
Lemma 5.7. Interpolating these two endpoint cases, using mixed norm interpolation (see, for
instance, [21, §1.18.4]), concludes the proof. O

5.7. Putting everything together. We are now ready to combine the ingredients to conclude
the proof of Proposition 5.2.

Proof of Proposition 5.2. By Proposition 5.4, for all 2 < p < 6 and all € > 0 one has
1/p
mlax (D)l ey = | 2 mla} <. el 2 mlaf JD) 1) -

Moreover, for all 2 < p < 00, € Z and all € > 0, Lemma 5.5 1mphes that

LP (R%)

9] +27FN for all N e N.

Imlaf arssy Snew | Y mlal
UEZ

‘MP(]R‘l)

Combining the above, we obtain that for all 2 < p < 6 and all £ > 0,

e
Imlai ) (D) ocgey Sep 220770 S el J(D)8y) + 27N |l
HEZ

which together with Corollary 5.8 yields

9—k/p—£(1/2—2/p—2¢)

Imlak,e](D)fLrre) Se 1f I 2 (ma)-

Since € > 0 was chosen arbitrarily, this is the required bound. O

We have established Proposition 5.2 and therefore completed the proof of the J = 3 case of
Theorem 4.1.
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6. THE PROOF OF THEOREM 4.1: THE J = 4 CASE

The analysis used to prove the J = 4 case of Theorem 4.1 is much more involved than that for
J = 3. This case constitutes to the main content of Theorem 4.1.

6.1. Preliminaries. Suppose 7 € 4(d) and a € C®°(R*\{0} x R) satisfies the hypotheses of
Theorem 4.1 for J = 4 with §; :=: d3 := &g, d3 := 58 and &4 := 9/10.” Note, in particular, that

{ [ (s), Ol = 1 - €]

[(y(s),©)| < 8dolg|  for j =1,2,3

as a consequence of (4.8). We note two further consequences of this technical reduction:
e Recall Y1) (0) = &; for 1 < j < 4 and so (6.1) immediately implies that

for all (;s) € suppg a x Iy, (6.1)

€4 = 1% -1&] and  [&] < 8dpl¢| for j =1,2,3, for all £ € suppy a.
e Since 7 € ®4(8p), we have |7 |, < dp. Thus, provided &y is sufficiently small,

(W), 01 = §-1¢l  forall (&) € suppga x [1,1]. (6.2)
Observe that this inequality holds on the large interval [—1, 1], rather than just .

Henceforth, we also assume that £, > 0 for all £ € supp, a. In particular,

YW (s),€) >0 for all (£;s) € suppga x [—1,1] (6.3)

and thus, for each ¢ € suppg a, the function s — (¥"(s),&) is strictly convex on [~1,1]. The
analysis for the portion of the symbol supported on the set {4 < 0} follows by symmetry.

If ay := a- B, as introduced in §4.2, the derivative bound (6.1) implies, via the van der Corput
lemma, that

Im[ax](€)] < 274 (6.4)
Thus, Plancherel’s theorem and interpolation with a trivial L™ estimate, as in the J = 2 case,
yields
Hm[ak]HMP(IRél) < 9~ k/2p for all 2 < p < 0.

As in the J = 3 case, to obtain the improved bound |m[ak]|rm@s) < 2%/ we decompose the
symbol ay, into localised pieces which admit more refined decay rates than (6.4). This decomposi-
tion is, however, significantly more involved than that used in the previous section.

6.2. Geometry of the slow decay cones. The first step is to isolate regions of the frequency
space where the multiplier m[a] decays relatively slowly. Owing to stationary phase considerations,
this corresponds to the regions around the conic varieties

[y 1:={{esuppea: (Y (s),€) =0, 1< j <d, for some s € Iy}, 2<d<3.

Note that I'y_1 has codimension d — 1, which motivates the choice of index. Since I'ys < I'y, the
decay rate for the multiplier m[a] depends on the relative position with respect to both cones. To
analyse this, we begin with the following observation, which helps us to understand the geometry
of FQ.

Lemma 6.1. If € suppg a, then the equation B (s),€) = 0 has a unique solution in s € [—1,1],
which corresponds to the unique global minimum of the function s — (~"(s),&). Furthermore, the
solution has absolute value O(dy).

"The choice & := 8o is not relevant to this part of the argument (we may simply take 2 := &) but is used for
consistency with the previous section.
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The above lemma quickly follows from (6.3) and the localisation of the symbol via the mean
value theorem. A detailed proof (of a very similar result) can be found in [I, Lemma 6.1].
By Lemma 6.1, there exists a unique smooth mapping 62 : supp; a — [—1, 1] such that
(Y® 0 05(€),6) =0 for all € € supp; a.
It is easy to see that € is homogeneous of degree 0. Define the quantities
u12(8) 1= {7y 002(£),&) and wz(€) := (¥ 06a(E),&) for all £ € suppg a.

Note that § € 'y if and only if uj2(€) = u2(§) = 0 and thus, roughly speaking, together the
quantities |uz(€)| and |ug2(§)| measure the distance of € to I's.

The next observation helps us to understand the geometry of the cone I';.
Lemma 6.2. Let € supp; a and consider the equation
"(s),€) = 0. (6.5)
i) If ua(§) > 0, then the equation (6.5) has no solution on [—1,1].
i) If ua(€) = 0, then the equation (6.5) has only the solution s = 62(€) on [—1,1].

iii) If uz(§) < 0, then the equation (6.5) has precisely two solutions on [—1,1]. Both solutions

have absolute value 0(53/2).

Again, this lemma quickly follows using the information in Lemma 6.1, the localisation of the
symbol and Taylor expansion. The relevant details can be found in [I, Lemma 6.2].

Using Lemma 6.2, we construct a (unique) pair of smooth mappings
0F: {¢e suppg a : uz(§) < 0} — [—1,1]
with 07 (€) < 67 (€) which satisfies
(Y005 (£),6) =0 for all £ € supp, a with uy(£) < 0.

Define the functions

ui—r(f) ={(y o 0%({),@ and “%,1(5) = <’y(3) o 9%(5),@ for all £ € suppg a with uz(§) <0

and note that £ € I'y if and only if uf (£) = 0 or uj (§) = 0. For this reason, we introduce

uf (&) if uf (§)] = minui (€)] and 6y(6) i— {gf(g) if uy (&) = uf ()
up (€) if Juy (§)] = min ui (€)| 07 (&) ifui(§) =ug(§)

which clearly satisfy

up(§) =

u1(§) = v 0 01(€), &)

Roughly speaking, the quantity |u; ()| measures the distance of ¢ from I'y. Furthermore, if { € T';
satisfies u31(§) = 0 where

uz1(€) == (Y 0 61(), 6,

then £ € T'y. Thus, again, |u3 1(£)| may be interpreted as measuring the distance of £ € 'y to I's.

The following lemma relates important information regarding the functions f(¢), 67 (€) and
the associated quantities ua(€), u2(€), uf (€), u§1(§>-

Lemma 6.3. Let § € supp, a with uz(§) < 0. Then the following hold:
i) ugy ()] ~ 165 (€) — 02| ~ 167 (€) — 07 (©)] ~ Jua (i) |'"%,
) 3/2
ii) Jun2 () — i (§)] < [ua (F)[”,
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_ 3/2
iii) Jui () —ui ()| ~ Jua ()"
Proof. 1) This is almost immediate from Taylor expansion around 63(§), and around 6, (§) in the

last display. The interested reader is referred to [!, Lemma 6.3] for details of a closely related
calculation.

ii) By Taylor expansion around 65 (€),

a2
ura(€) = (€) + uy (6 POy aate) - B 100"

where |wy(§)| ~ |€|. The desired estimate follows from the above expansion and part i).

iii) By part i), it suffices to show

uf (€)= ur (©)] ~ hual©) 17 ) — 05 )] (6:6)
To this end, note that
o7 (€) ,
O -ur©) = [ 0.0
01 (6)

By Lemma 6.1, u2(§) < (7"(s),£&) < 0 for 67 (£) < s < 67 (€). Thus, the upper bound in (6.6)
immediately follows from the above identity and the triangle inequality. To see the lower bound
in (6.6), recall from (6.3) that the function s — ¢(s) := (y"(s), ) is strictly convex in [—1,1] and
that ¢ 0 07 (£) = ¢o 07 (£) = 0. As 07 (€) < 02(€) < 07 (€) and ¢ 0 63(€) = ua(€), the convexity of
¢ implies

o
[ 16601 ds = Slua©llet © - 67 ©)

0,

and thus (6.6) follows from the constant sign of ¢(s) on [07 (£), 0] (€)]. O

6.3. Decomposition of the symbols. For k£ > 1 consider the frequency localised symbols aj, :=
a - B* as defined in §4.2. We begin by decomposing each a;, in relation to the codimension 2 cone
I'y corresponding to the directions of slowest decay for fi. In order to measure the distance to
this cone, we consider the two quantities u1 2 and wug introduced in the previous subsection and,
in particular, form a simultaneous dyadic decomposition according to the relative sizes of each.

Here it is convenient to introduce a ‘fine tuning’ constant p > 0. This is a small (but absolute)
constant which plays a minor technical role in the forthcoming arguments: taking p := 1075 more
than suffices for our purposes.

A~

Decomposition with respect to I's. Let 5,1 € CP(R) be the functions used to perform a Littlewood—
Paley decomposition in §4.2. Let 54, f— € CP(R) with supp S+ < (0,00) and supp f— < (—o0,0)
be such that 8 = 8. + f_. For each m € N, write

m m—1
N2 r)n(ra) = > BERTIrN(@r) + ] 0(25) (B4(202) + B-(2°r2)) + (2™ r1)n(27 7).
=0 =0

The above formula corresponds to a smooth decomposition of [—2,2] x [—1, 1] into axis-parallel
dyadic rectangles: see Figure 3. We apply this decomposition® with 1 = 2_ku172(£) and ro =
p~127Fuy(€). This is then used to split the symbol ay as a sum

[%/4] [k/4]—1
ay = Z a1 + a2 + Z bi¢
=0 =0

8Here the B function should be defined slightly differently compared with (4.3). In particular, when acting on 71

we have 8(r1) := 7(27%r1) — n(r1) and when acting on rs we have 8(r2) := 7(273r2) — n(r2). Such minor changes

are ignored in the notation.
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T2 A

27m+2

2—m+1

\
4

9—m 2—m+1 2—m+2 2—m+3 1

FiGURE 3. Two parameter dyadic decomposition in the upper-left quadrant.

where |k/4| denotes the greatest integer less than or equal to k/4 and

a1 (6 8) 1= ap(& )BT ug o ()n(p™ 127 ug(€)) 0 < €< |k/4),

ak(&; $)n(27F 3w 9(€)) B4 (p 127 2 uy(€)) if 0 </t <|k/4]
ap (& s)n2 7R3y 5 (€)m(p~ 12 k2R Ay (8))  if 0= k/4]

bre(&:8) 1= an(& s)n(2 F 3 u15(€)) B (p 127 ug(€)) 0 < € < |k/4).

The following remarks help to motive the above decomposition:

age2(&;8) =

For & € suppg ay.,1, the functions s — (7/(s),{) and s — {(7"(s), £) do not vanish simultaneously.
This is due, in part, to the lower bound on [ug1(§)|. On the other hand, for § € supp, ay 2 we
have uz(§) > 0 and therefore s — (7”(s),&) is non-vanishing by Lemma 6.2. Quantifying these
observations, one obtains the decay estimate

Imlag,e, ] ()] <27¥2 fori=1,2 (6.7)

via the van der Corput lemma. See Lemma 6.12 a) for details. This improves upon the trivial
decay rate (6.4) since ¢ varies over the range 0 < ¢ < |k/4|. Note that ¢ = k/4 corresponds to the
critical value where (6.4) and (6.7) agree.

For £ € suppg by ¢, as u2(§) < 0, the function s +— (7"(s),{) vanishes at s = 07 (¢) by Lemma 6.2.
Moreover, the lack of a lower bound for |ug 2(€)| allows for simultaneous vanishing of s — (v/(s),&)
and s — (v"(s),£), in contrast with the situation considered above. However, the lower bound on
|us(€)| implies that the functions s — (7”(s), &) and s — (y®)(s), &) do not vanish simultaneously.
Quantifying these observations, one obtains, via the van der Corput lemma, the decay estimate

[m[br,e] (€)] < 27H/3H3, (6.8)

Again, this improves upon the trivial decay rate (6.4) since 0 < ¢ < |k/4]| and, furthermore, ¢ = k/4
corresponds to the critical value where (6.4) and (6.8) agree. However, the estimate (6.8) can be
further improved by decomposing each by y with respect to the codimension 1 cone I'1. Recall that
this cone corresponds to directions of slow (but not necessarily minimal) decay for i. We proceed
by performing a secondary dyadic decomposition with respect to the function u;, which measures
the distance to I'y.
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Decomposition with respect to T'y. If £ € suppg by ¢, then uz(§) < 0 and therefore the roots QI—F &) e
[—1,1] are well-defined by Lemma 6.2. Observe that

ug(§)] ~ p2572  and  Jug2(€)] £ 277 for all € € suppy by,

and so it follows from Lemma 6.3 ii) that
lup(€)] <283 forall £ e suppg by ¢-
Consequently, provided p is chosen sufficiently small,

bty (638) = b, (& 8)m(p27F 320y (€)). (6.9)
For every k € N define the indexing set

A(k) = {e — (b1, 0) €720 < by < |k/4], ty <y < [%J}
and, for each 0 < /3 < |k/4]|, consider the fibre associated to its projection in the fs-variable,
A(k,lo) == {€e A(k) : £ = ({1, 03) for some ¢, € Z}.

In view of (6.9), we may decompose

bt (€58) = bty (65.8)0(p2 73201 (€)) = an, 3(68) + ahppa(&is) + D) bre(&:s)

eA(kt2)
where
05,365 8) 1= brgy (& 5) (N(p27 732 (€)) — m(p~*27F 300y (€))),
Uy, 4(658) = brgy (§8)n(p~ 27 ¥ 220y (€)) (1 = m(p~"'2% (s — 01(€))))
and

b olE:5) = biees (& 8)B(p~ 127300y (€))n(p™12% (s — 61(€))) i 1 < [(2k + £2)/9)]
BESET ) b (€ 8)(p 12730y (€) (122 (s — B1(€))) if €1 = (2K + £2)/9)

for £ = (01,02) € A(k).

The final decomposition. Combining the preceding definitions, we have

[k/4] 4
ap = Z Z Ak 0. + Z b}ae (610)
=0 1=1 Len(k)

where for ¢ = 3,4 it is understood that aj ¢, = 0 for £ = |k/4|. This concludes the initial frequency
decomposition.

The following remarks help to motive the above decomposition:

For £ € supp; aye3 or £ € suppg a4 it transpires that the functions s — (y'(s),&) and s —
+"(s),&) do not vanish simultaneously. Quantifying these observations, one obtains the decay
estimate

Im[age.,](€)] S 27F2F¢ for v = 3, 4,

exactly as in (6.7). See Lemma 6.12 a) for details. Here, however, the attendant stationary phase
arguments are a little more delicate than those used to prove (6.7) and, in particular, they rely
on a careful analysis involving both I'y and I's. The lower bounds on |uj(§)| and |s — 61(&)| are
fundamental in each case.

Turning to the by ¢ symbols, the localisation |s — 61(§)| < p27t2 leads to the following key
observation.
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Lemma 6.4. Let k€ N and £ = ({1,02) € A(k). Then

(YO (s), ] ~ p!22*% for all (&) € supp by - (6.11)
Proof. The localisation of the symbol ensures the key properties
lug(€)] ~ p28722 |5 —0,1(€)] < p27 7 for all (&;s) € supp by e. (6.12)
By the mean value theorem we obtain
GP(5),6) = uz1(€) + w(&s) - (s — 01(6)), (6.13)

where w satisfies |w(&; s)| ~ 2F. Observe that (6.12) and Lemma 6.3 1) imply |ug 1 (€)] ~ p/22F—¢2.
Consequently, provided p is sufficiently small, the second inequality in (6.12) implies that the us ;
term dominates the right-hand side of (6.13) and therefore the desired bound (6.11) holds. O

The condition (6.11) reveals that the symbol by, ¢ essentially corresponds to a scaled version of
the multiplier ay ¢ from the J = 3 case, for a suitable choice of £ and k. Of course, the condition
(6.11) immediately implies

[mb,e($)]] < 27F3H/3, (6.14)
as in (6.8). However, arguing as in Lemma 5.6, one may improve the decay rate to
m[bye(€)]] s 27F2HBaTRIL, (6.15)

see Lemma 6.12 b). Indeed, for each 0 < {5 < |k/4], the decomposition of the ay for the J = 3
case in §5.3 matches that of the by ¢ above, with the identification

ke—k—0 and (< 3=

The bound (6.15) corresponds to the conclusion of Lemma 5.6 once we substitute in these indices.
Observe that (6.15) is indeed an improvement over the trivial decay rate (6.14) since, for ¢5 fixed,
£y varies over the range 0 < /1 < [#J. Note that /1 = % corresponds to the critical index
where (6.14) and (6.15) agree.

Remark. The symbols in the above decomposition are in fact smooth. This is not entirely obvious,
since the function u; is defined pointwise as the minimum of |uj | and |uf|. Thus, u; fails to be
smooth whenever u] (§) = +u] (£). However, the decomposition ensures that |ug(&)| ~ p2k—2¢2
and |ui(&)] < p12F 3% for all € € SUPDg Ak 054 OF § € suppg bge. Combining these facts with
Lemma 6.3, one easily deduces that
- k—3¢
U7 (€) + i (6)]  p/22h 2

and so up is smooth on the {-support of either ay g, 4 or byg,. Furthermore, these observations
also imply that the function (&) is smooth on the supports. The symbol ay, ¢, 3 can be treated
in a similar manner, by writing it as a difference of the symbols

Drees (6 8)N(P2 ¥ 320 (€)) = by (&5)  and by, (& 8)n(p "2 F 32wy (€))
and showing that both are smooth.
Given the above decomposition, in order to prove the J = 4 case of Theorem 4.1, it suffices to
establish the following.
Proposition 6.5. Let 6 <p <12, ke N and ¢ > 0.
a) For all 0 < ¢ < |k/4] and 1 <1 <4,

Imlan el arogray Sp,e 27 FP7H/28P72),

b) For all £ = ({1,03) € A(k),

Hm[bk,ﬂ] HMP(]R‘l) $p,€ 2—3(51—Zz)(1/2p—5)—€2(1/2—3/p—5) )
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gl’\

k/4 /
2%/9 /

N34

k/4 "2

FIGURE 4. Setting ¢ = {1 for a1 and £ = fl3 for agy,, 2 < ¢ < 4, one can
interpret the decomposition (6.10) in the (f2,¢;)-plane as follows. The symbols
a1 correspond to horizontal lines in the lower triangle, whilst the symbols ay ¢ 2
correspond to vertical lines in the diagonal and upper triangle whenever ug(£) > 0.
If up(§) < 0, the symbols ay, ¢ 3 correspond to vertical lines in the fattened diagonal,
the symbols aj ¢4 correspond to vertical lines in the upper triangle (under the
additional condition that |s — 61(£)| = 27) and the symbols by ¢ correspond to
integer points in the upper triangle (under the additional condition that |s—6;(§)] <
2 2),

Proof of J =4 case of Theorem 4.1, assuming Proposition 6.5. Let 6 < p < 12 and define
1 . (1 31
Ep = ,,mm{,_, —} > 0.

2 2 p'2p
Apply the decomposition (6.10) to deduce that
4 |k/4|
Imag]| arvrey < Z Z Imlakedlam@sy + > Imlbeellames).-

LeA(k)

By Proposition 6.5 a), we have

4 |k/4]
Z Z Im[a.e.] k/pZQ €(1/2=3/p—¢p) <p 2 kip,
=1 £=0 =0

Similarly, by Proposition 6.5 b), we have

Q0 o0
Z I [bre] | aro(me) <p 9—Fk/p Z 9—t2(1/2=3/p—¢ep) Z 9—3(t1—€2)(1/2p—ep) <, 9—k/p.
ZEA( ) £2=0 l1=Lo
Combining these observations establishes the desired result for 6 < p < 12. The remaining range
12 < p < o follows by interpolation with a trivial L™ estimate. ]

The rest of §6 is devoted to establishing Proposition 6.5. Before proceeding, it is instructive to
describe the general strategy.

By Plancherel’s theorem, (6.7) and (6.15) imply

Imlane |z esy < 279242 and  [m[bge]lae (s < 27HPFEATERA,
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As ¢, /1 and /5 increase, these estimates become weaker. To compensate for this, we attempt to
establish stronger estimates for the M*(R*) norm. This is not possible, however, for the entire
multipliers and a further decomposition is required. The us(&) localisation means that m[agy,|
and m[by ¢] are supported in a neighbourhood of the cone I'y. Furthermore, the u;(€) localisation
means that m[by, ¢] is localised in a neighbourhood of the cone I'1. Consequently, one may apply a
decoupling theorem for such cones (in particular, instances of Theorem 4.4) to radially decompose
the multipliers. In the case of the m[by ¢|, we first decouple with respect to the cone I'y. After
rescaling, the localised pieces can be treated in a similar manner to the multipliers from the J = 3
case. In particular, we apply a second decoupling to each rescaled piece with respect to the cone
I’y to further decompose into smaller pieces. For both the ay g, and by ¢, it transpires that each
radially localised piece is automatically localised along the curve in the physical space, and this
leads to favourable M*(R*) bounds: see Lemma 6.11 and Lemma 6.13 below.

6.4. Fourier localisation and decoupling. The first step towards proving Proposition 6.5 is
to further decompose the symbols ay,, and by in terms of 62(§) and 6;(§) respectively. Fix
¢ € C*(R) with supp¢ < [—1,1] such that >, ((- —1) =1. For 0 < /¢ < |k/4],1 <: <4 and
L= (51,52) € A(kﬁ), write

heo= Y. ah,,  and  bee= > b,

peZ veZ
where
alt (&) == age.(&55)¢(202(6) — p), (6.16)
Fe(&58) = bra(&;5)C (25020, (6) —v). (6.17)

In the case of the by ¢, we also consider symbols formed by grouping the b} , into pieces at the

larger scale 272, Given £ = (¢1,4) € A(k) we write Z = U,z Me(n), where the sets 9 (p) are
disjoint and satisfy
Ne(p) < {veZ:|v— 23(51752)/2/“ < 23(51752)/2}'

For each p € Z, we then define
Z by e

llemg

and note that 61(¢) — s, < 27% on supp bH, Where sy = 272 p. Of course, by the definition of

the sets DMp(u),
bre= 2 b0k =2, D Ve

UEL HEZ veN, (1)

Given 0 <7 < 1 and s € I, recall the definition of the (2,7)-Frenet boxes ma(s;r) introduced in
Definition 4.2:

ma(sir) = {€ e R [(es(9), Ol < T for 1< <3, [eal(s) & ~ 1} (6.18)
The symbols a’,:’m and bZ:Z satisfy the following support properties.
Lemma 6.6. With the above definitions,
a) suppg CLZ,&L c 2k . 71'2(8#;2_£) for all0 < <|k/4|, 1 <v<4 and p € Z, where s, := 2~ u;
b) suppg bZ:’tf c 2k. T2 (Su; 2_62) for all £ = (01,¢3) € A(k) and p € Z, where s, 1= 9tz
It is convenient to set up a unified framework in order to treat parts a) and b) of Lemma 6.6

simultaneously. Given n, s € R, let Za(k, n;s) denote the set of all £ € suppg ax which lie in the
domain of # and satisfy

02(6) = sl S 27" w2777 Jua(§)] S 257 (6.19)
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Note in particular that:
a) suppg ay, ,, < Ea(k, £;5,) for 1 <0 < 4.
b) suppg by, , S Ea(k, Lo s,,) and suppe by , < Za(k, £2; s,,) for all v € Ne(u).

Indeed, for the respective parameter values, all the desired properties stated in (6.19) hold as
an immediate consequence of the definition of the symbols, with the exception of the bounds
02(€) — s, < 27 for € € suppe by, , and |02(§) — s,| < 274 for ¢ € suppe by, , and v € My(u).
However, by Lemma 6.3, it follows from the localisation of the symbol that

102(6) — sl < Juz(§)]" +102(6) — 5| £ 27 for all € € suppe b,
which further implies
102(€) — 50| S 162(€) = 80| + sy — sl S 27 for all € € suppe by, v € Ne(p),

by the condition |s, — s,| < 27% for s, := 271)/2y Thus, all the required bounds hold.
Note that the support property in b) 1mmed1ately implies that supp; b, b ’“ < Eo(k, lo;5,).

Proof of Lemma 6.6. Let n, s € R. As a consequence of the preceding discussion, it suffices to
show that

Zo(k,n;s) € 2% - mo(s;27).

Let £ € Zo(k,n;s) and observe that the localisation of ay, the implicit definition of 62 and the
latter two conditions in (6.19) imply

1A ® 0 0y(€), 6 < 2F-U-Im  for 1 <i <4
Since the Frenet vectors e; 08y(€) are obtained from the v 06y (€) via the Gram-Schmidt process,
[(ej 0 02(€),8)] < 28U for 1 <i <4
On the other hand, the first condition in (6.19), together with (4.12), implies
[ei 0 62(), ()] < 102(€) — 5" s 2707,

Writing ¢ with respect to the orthonormal basis (ej 0 65 (f))jzl, it follows that

[<ej(s), O] < Z (e 0 B2(€), E)|[ei 0 02(E), ej(s,)p| < 2F-U=Dm,

Thus, £ satisfies all the required upper bounds arising from (6.18). The remaining condition
|{e4(s),€)| = 2¥ holds as an immediate consequence of the initial localisation of ay. O

The argument used in the proof of Lemma 6.6 can be applied to analyse the support properties
of the individual b7 ,, although in this case the geometric significance of the supporting set is only
apparent after rescaling (see Lemma 6.8 below). Given 0 < 71,79 < 1 and s € I, define the set

mi(sir,re)i={€ e R 1 [(ej(s), ) s 777 for j = 1,2, [(es(s), ) ~ 1, [(ea(s),&)] < ra}. (6.20)
The multipliers bZ,Z satisfy the following support property.
Lemma 6.7. With the above definitions,
suppy by, o < 2k=t2 . 1) (s,; 9~ (30 —6)/2 2f2)

for all £ = (¢1,05) € A(k) and v € Z, where s, := 2~ (30—6)/2,
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As with the proof of Lemma 6.6, here and in Lemma 6.13, we will work with a more general
setup. This abstraction is not particularly useful at this stage, but it will help to unify some of
the later arguments. Given m = (n1,n2) € (0,00)% and s € R, let Z1(k,n;s) denote the set of all
§ € suppg ay, which lie in the domain of 61 and satisfy

01(6) —sl S 277, u(©)] S 2P Jug(€)] ~ 25 (6.21)

Note in particular that:
a) suppg aj, ,, S Z1(k, 4, 5,) for L =3 or 1 = 4.
b) suppy bpe S =1 (k:, w,@; s,,).

Indeed, the definition of the symbols implies |u2 ()| ~ 2572, |uq (€)] < 2873¢ and [02(€) —s,| < 27°
for all £ € supp, al ,, when ¢ € {3,4}. Consequently, by Lemma 6.3, it follows that

61(6) = sl < Ju2 () +102(6) = sul <27 Jusa ()] ~ Jua ()| ~ 2

for all § € suppg a‘kie’” which covers the required bounds for a). Turning to b), all the desired
properties hold as an immediate consequence of the definition of the symbols, with the exception
of the bound |ug 1 (€)| ~ 2¥~*2. However, as in a), the function u3 1 can be estimated via Lemma 6.3
using the ug localisation.

Proof of Lemma 6.7. Let n = (n1,n2) € (0,00)? and s € Iy. As a consequence of the preceding
discussion, it suffices to show that

Z1(k,m;s) € 2872 (5527 2772),

The argument in fact depends on the implicit constants in (6.21) satisfying certain size relations,
but we shall ignore this minor technicality. In the case in question (namely, on the support of
bZ,€)7 the required size relations follow provided p is chosen sufficiently small.

Let £ € Z1(k,n;s) and observe that the localisation of ay, the implicit definition of §; and the
latter two conditions in (6.21) imply

(1D 061(8),6)] $ 28707Im"2 fori=1,2, [(vPei(€),6)] ~ 2", [(YWohi(6),6)] ~ 2.

Since the Frenet vectors e; o f(£) are obtained from the () o 65(¢) via the Gram-Schmidt pro-
cess, the matrix corresponding to change of basis from (ei o6 (5))?21 to (7(i) o6y (5))?21 is lower
triangular. Furthermore, the initial localisations imply that this matrix is an O(J) perturbation
of the identity. Consequently, provided § > 0 is chosen sufficiently small,

[Cei 0 61(6), )1 £ 27C7Im2 fori=1,2, [ego0i(€),6)] ~ 2", [eso01(€), )] ~ 2",
On the other hand, the first condition in (6.21) together with (4.12) imply
[ei 0 01(€). €;(s))] < |s = 1) g 2707,

Writing & with respect to the orthonormal basis (ej o6, (5))?‘:1, it follows that

4
€ ej ()] < D) [Kei 0 61(€), E)lIei 0 61(€), e (s))] < 2" ((Bmamrna)v0,
i=1

Thus, ¢ satisfies all the required upper bounds arising from (6.20). The above argument can easily
be adapted to give the required lower bounds, provided the implied constant in the the hypothesis
lug1(€)| ~ 28772 is large compared to that in the hypothesis |6 (&) — s| < 27"1. O
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Fix some £ = ({1,02) € A(k) and p € Z with s, := 272 € [~1,1]. To simplify notation, let
0= 5., A= 27% and let 7 := Yo.x denote the rescaled curve, as defined in Definition 2.1, so that

A(s) == (Waa) ™ (10 + As) = (@) (6.22)
Given a symbol b e CP(R* x Iy), let b be the rescaled symbol defined by the relation
b(E3) =b(&s)  for €:=([1]on) € and 3:=A"Y(s— o). (6.23)
Given f € .7(R%), it follows by a simple changes of the variables that
m[b](D)f(x) = A -m[b](D)f(Z) (6.24)

where:

e The multiplier m[b] is defined in the same manner as m[b] but with the curve 7 replaced
with 4 and the cut-off x, replaced with yo(o + A-);

o fi=fo [’V]J,M
o @:=([Yon) " (2= 7(0).
Let (éj)§=1 denote the Frenet frame defined with respect to 4. Given 0 < r < 1 and s € I, recall
the definition of the (1,7)-Frenet boxes (with respect to (éj)§=1) introduced in Definition 4.2:

Ti(sir) == {€ e R [@(s), Ol s %77 forj=1,2, [(&(5),)| ~1, [(€a(s), )] < 1}
Note that all these definitions depend of the choice of p and £, but it is typographically convenient

to suppress this dependence.
The rescaled symbols bz,e satisfy the following support properties.

Lemma 6.8. With the above definitions,
Suppg EZ,Z c ok—ik - 71 (8y; 2_3(51_62)/2)

for all £ = (01,05) € A(k) and v € Ny(n), where 3, := 22(s, — s,,) for s, := 2~ B1~)/2),

Proof. For € € Suppg BZ,e, it follows from Lemma 6.7 and the definition of the rescaling in (6.23)
that £ := ([’y](,,,\)_Tg~ satisfies

Kej(s,), ) < 28" BDBORIEE for j =1,2, [(es(s,), &) ~ 2872, [(ea(s,), &) ~ 2"

Since the matrix corresponding to the change of basis from (ej(sy))?zl to (”y(j)(sy))jzl is lower
triangular and an O(dp) perturbation of the identity, provided dy is sufficiently small,

(YD (), O] g 27 CDCEEE for j =12, [(yP(s,), 6] ~ 257, (YW (s), )] ~ 2%,
On the other hand, recalling that A := 272, it follows from the definition of 4 from (6.22) that

GV (,),€) =277 V(s,), &) for j= 1.
Combining the above observations,
K79 (5,), )| < 2k~ B-NBO-L)2=0+Db g5 j =1, 2,
[GP (), ) ~ 26742, [(FW(5,),6)] ~ 210

Provided §g is sufficiently small, the desired result now follows since the matrix corresponding

to the change of basis from (éi(§,,))?:1 to (i(i)(E,,))?:l is also lower triangular and an O(dy)

perturbation of the identity. O

In view of the support conditions from Lemma 6.6 and Lemma 6.8, the multipliers can be
effectively decoupled using Theorem 4.4.
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Prop051t10n 6.9. For all 2 < p <12 and all € > 0, the following inequalities hold:
a) For all 0 < 0 < |k/4], 1 <1 <4,

1/p
H Z m[OLZ’&L] (D) Lo (rY) <e 25(1/2 1/P)+z—:£< Z Hm[all:,&L] (D)f”ip(ﬂv))
UEZL WEZL
b) For all £ = ({1,02) € A(k),
R 1/p
| Xl ) Se 22O (N D) )
HEZ HEZ

Proof. In view of the support conditions from Lemma 6.6, after a simple rescaling, the desired
result follows from Theorem 4.4 with d —1 = 2, n = 4 and r = 27¢, 27 for parts a) and b),
respectively. O

Proposition 6.10. For all £ = (¢1,02) € A(k), 6 <p <12 ande > 0,

HZ mlb (D <, 202(1/2=1/p+2)93(61—L2)(1— 4/p+a)/2<2 Im[by, (] (D )fHLp(R4> /p.

VEZ veZ

LP(R4)

Proof. 1t suffices to show that, under the hypotheses of the proposition, for all ;1 € Z one has

H Z m[bZ,e](D)f <. 23(51*@2)(174/77%5)/2( Z Hm[ ]( )fHLp(R4 ) /p. (6.25)

veMNe(u) veNe(u)

Lp(R?)

Indeed, one may then combine the above inequality with Proposition 6.9 b) to obtain the desired
decoupling result. However, by applying a linear change of variables, (6.25) is equivalent to the
same inequality but with each m[by ,| replaced with the rescaled multiplier ﬁl[i)zz] as defined in
(6.24). In view of the support conditions from Lemma 6.8, after a simple rescaling, the desired
result follows from Theorem 4.4 withd —1 =1, n =4 and r = 273(1-62)/2, O

6.5. Localisation along the curve. The localisation in 62(£) and 6 () introduced in the pre-
vious subsection induces a corresponding localisation along the curve in the physical space. In
particular, the main contribution to m[al , | and m[b} ,] arises from the portion of the curve

defined over the interval |s — s,| < 27¢ and |s — s,| < 27G47%)/2] respectively. This is made
precise by Lemma 6.11 below.

For each p,v € Z, let s, := 27y and s, := 2-G4~%)/2y Given & > 0 and for the fine tuning
parameter p as introduced in §6.3, define

ap (€9) 1=l (Om(p2' 7 (s = 5,)), (6.26)
by (€ s) = b%,e(5)77(02(1‘5)(%“’2)/2(8 —5)). (6.27)

The key contribution to the multipliers comes from the symbols ag’éi) and b:’f) respectively.

Lemma 6.11. Let 2 < p < © and € > 0.
a) For all0 < { < |k/4|, pneZ and 1 <1 < 4,

Hm[a;;,m — aZ:éi)]HMp(sz) SNep 27N for all N € N.
b) For all £ = ({1,03) € A(k) and v € Z,

Imlbf e — 0y Marw sy Svep 27N for all N eN.
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Proof. In both part a) and b) it is clear that the multipliers satisfy a trivial L*-estimate with
operator norm O(ZCk) for some absolute constant C' > 1. Thus, by interpolation, it suffices to
prove the rapid decay for p = 2 only. This amounts to showing that, under the hypotheses of the
lemma,

Imlafp, — i oy Sne 27 and  [mlbf, — 0y S e ey Save 27 forall NeN.

(6.28)
This is achieved via a simple (non)-stationary phase analysis.
a) Here the localisation of the ay ¢, symbols ensures that
(€] £ 2575 Jua(€)| < p25% for all (&) € supp (af,, — afi}?): (6.29)

On the other hand, provided p is sufficiently small, the additional localisation in (6.16) and (6.26)
implies
s — 02(6)| = p~ 127079 for all (&;5) € supp (a’,:’m — a’,::éi)). (6.30)

Fix § € suppg (af ,, — af,:’éi)) and consider the oscillatory integral m|al; , — aZ’éi)](ﬁ), which has

phase s — (y(s),£). Taylor expansion around 62(&) yields

(Y(5),6) = u12(€) + (u2(€) + wi(&5) - (s — 02(6))?) - (s — 62(8)), (6.31)
(V'(5),€) = uz(€) + wal&; 5) - (5 — 02(6))?, (6.32)
AO(s),&) = ws(&: ) - (5 — 02(6)), (6.33)

where the w; arise from the remainder terms and satisfy |w;(&;s)| ~ 2. Provided p is sufficiently
small, (6.29) and (6.30) imply that the w(£;5) - (s — 62(€))? term dominates the right-hand side
of (6.31) and therefore

(7' (5),6)] 2 2[5 — O2(€)P for all (&;5) € supp (), — af)). (6.34)

Furthermore, by (6.29) and (6.30), the term w(&; s) - (s —02(€))? dominates in (6.32). This, (6.33),
(6.34) and the localisation (6.30) immediately imply

(7" (5), )] < 270791 (5), P,
[P (s), & < 27 EH=D210/ (), )P,
[ (s),&)] < 28 <5 27 HU=DUTD I (5), ) for all j > 4
for all (&;s) € supp (aﬁ@ - a%:éf)).
On the other hand, by the definition of the symbols, (6.34) and the localisation (6.30),
0N (alty, — )& 5)| v 2N 5 27 TN TSN |/ () N for all N e N.
Thus, by repeated integration-by-parts (via Lemma C.1, with R = 2F—46+36 > 1)
|m[ag’m . az:éi)](m <y 9—(k=40)No—3<tN ¢ 1] N e N.
Since 0 < ¢ < |k/4] < k/4, the first bound in (6.28) follows.
b) Here the localisation of the by » symbols ensures that
(] £ p"2"%0, Jua(€)] ~ 272 s = 61()] < p27" (6.35)
hold for all (§;s) € supp (b, , — b:’}e)). Furthermore, by Lemma 6.4,

[V (s), ] ~ p!2257% for all (€;5) € supp by.p, (6.36)
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whilst, provided p is sufficiently small, the additional localisation in (6.17) and (6.27) implies
|5 — 01(6)] 2 p127(17DBA-BI2 for all (¢;5) € supp (B, — OY)). (6.37)
Fix £ € suppg (bf  — bZ’f)) and consider the oscillatory integral m[by , — b:’f)](f), which has
phase s — (y(s),&). Taylor expansion around 61 (&) yields

(7'(5),6) = ur(§) + wi(&;5) - (s — 01(6))?, (6.38)
('(5),£) = w2(&; 5) - (s — 01(8)), (6.39)

where the w; arise from the remainder terms and satisfy |w;(&;s)| ~ p'/22¥=% by (6.36). Provided
p > 0 is sufficiently small, (6.35) and (6.37) imply that the second term dominates the right-hand
side of (6.38) and therefore

[ (5), 6] 2 pM225 s — 01(€)2 for all (& 5) € supp (B ¢ — b)), (6.40)
Furthermore, (6.39), (6.36), (6.40) and the localisation (6.37) imply
(7" (5), )] 5 27 FHEHUmBARIZ 10/ (5), 6,
((5),0)] £ 24 5 9 230D (), 3,
[(V(s), )] 5 2 5 27T UITARTRIROT Y (5), ) for all j > 4
for all (£;s) € supp (by , — b:’f)).
On the other hand, by the definition of the symbols, (6.40) and the localisation (6.37),

|6§V( Z,z B bZ’f))(é; s) 7N2£2N7 2(175)(3617€2)N/2}

<N max {p
<Ny 2—(k—l2—3(1—€)(3ﬁ1—€2)/2)]\f|<,y/(8)’ €>|N for all N € N
and all (&;s) € supp (bzl — bZ’f)), using that 0 < ¢y < ¢ for £ € A(k). Thus, by repeated
integration-by-parts (via Lemma C.1 with R = 2k—(2—=3(1-6)36-6)/2 > 1)

m[by o — b051(E8)] S,y 27 B30 —E)AN=3BO-EIN/2 for ] N € N.
Since fo < 01 < (2k + £2)/9 and 0 < l5 < k/4 for £ € A(k), the second bound in (6.28) follows. [
6.6. Estimating the localised pieces. Each piece of the multipliers m[a’;’éi)] and m[bZ’f)]
arising from the preceding decomposition satisfies favourable L? and L* bounds.

Lemma 6.12. a) For 0 </{ < |k/4|, peZ,1 <1 <4 and e > 0, we have

Imlafy N ey < 2792+

b) For £ = ({1,03) € A(k), vEZ and € > 0, we have

Hm[bZ’fgs)]HMz(W) < Q_k/2+(3€1+€2)/4'

Proof. a) If £ = |k/4], then the desired bounds follow from Plancherel’s theorem and the van der
Corput lemma with fourth order derivatives. For the remaining cases, it suffices to show that

[ (), 1 +27¢y"(5), &) 2 2673 for all (&) € suppaly(?. (6.41)
We treat each class of symbol, as index by the parameter ¢, individually.

v = 1. Here the localisation of the symbol ensures the key properties

ur2(€)] ~ 2872, |ua(€)] < p25 for all (&) € suppal (. (6.42)

)
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By Taylor expansion around 65(), one has
('(5),€) = u1,2(6) +u2(€) - (s = 62(6)) + wi(&s ) - (s — 62(€))?, (6.43)
(7"(5), &) = u2(€) + wa(&;8) - (s — 62(€))” (6.44)

where the functions w; arise from the remainder terms and satisfy |w;(&;s)| ~ 2% for i = 1, 2. The
argument splits into two cases:

Case 1: |s — 05(¢)| < p'/*27¢. Provided p > 0 is chosen sufficiently small, (6.42) implies that the
u12(€) term dominates the right-hand side of (6.43) and therefore [(7/(s), )| 2 283

Case 2: |s — 05(¢)| = p'/*27¢. Again provided p > 0 is sufficiently small, (6.42) implies that the
second term dominates the right-hand side of (6.44) and therefore [(v(s),&)| = pt/22k=2¢.

Thus, in either case the desired bound (6.41) holds.

L= 2. Suppose 0 < ¢ < |k/4| and £ € supp agg . Recall, by Lemma 6.1, that 62(¢) is the unique

global minimum of the function s — (y”(s),&) on [—1,1]. Thus, (v"(s),&) = us(&) ~ p2F=2¢, as
required.

t = 3. Here the localisation of the symbol ensures the key properties

lup (€)] ~ pt2k=3¢, lug (€)| ~ p2k—2¢ for all (&;s) € supp aﬁ:é;) (6.45)
The argument splits into two cases:
Case 1: ming |s — 0] (¢)| < p?27¢. By Taylor expansion around 6 (¢), one has
’ _ .+ + (s — 9%(5))2 (g +e))\3
(8),6) = ur (§) +uz, (&) - ———— +wi(§s) - (s = 07(€)", (6.46)

2
where the functions w¥ arise from the third order remainder term and satisfy |w*(£;s)| ~ 2F. More-
over, (6.45) and Lemma 6.3 i) imply \u%l(ﬁ)] ~ pt22k=t Provided p is sufficiently small, (6.45)
implies that the ui (¢) term dominates the right-hand side of (6.46) and therefore [(y/(s),&)| =
p42k—3f'
Case 2: ming |s — HI—F (€)] = p*27". In this case, rather than analysing Taylor expansions, we use

a convexity argument. Fix £ € supp a’,:’é? and let

(b: [_171] _)Ra ¢: 8'_)<7”(5)7§>;
by (6.3), this function is strictly convex. Thus, given ¢ € [—1, 1], the auxiliary function

¢(s) — (1)

@: [-1,1] >R, ¢:s— T s+ for s#t and gq:t— ¢'(t)
5 _
is increasing. Setting ¢ := 6 (£) and noting that ¢ o 6, (§) = 0, it follows that
0
o(s)  __do6(9 WO forall —1<s < 6,(6),

s=00(€) 0O =01 () 0a(8) — 01 ()
where we have used the fact that uz(§) < 0 on the support of ay 3. If s € [02(£), 1], then we can

carry out the same argument with respect to t = 6 (€) to obtain a similar inequality. From this,
we deduce the bound

o) = 1220015 = 07 @)
RO mn T 6 @

Recall from (6.45) that |ua(€)] ~ p2#~2¢ and therefore |09(€) — 07 (€)| ~ p*/?27¢ by Lemma 6.3 1).
Substituting these bounds and the hypothesis ming [s — 07 (€)| = p?2~¢ into (6.47), we conclude
that [(y"(s),&)| 2 p*/22F2.

forall —1<s<1. (6.47)
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Thus, in either case the desired bound (6.41) holds.

v = 4. Here the localisation of the symbol ensures the key properties

lup (€)] < p*2k—3¢, |s — 01(6)] = p27° for all (&;s) € supp ag:lﬁj. (6.48)
By Taylor expansion around 61 (), we obtain
Sy 2
5.6 = ur(©) + usn (@) - T o (e9) - (s - dr()) (6.49)
("():6) = uz1(€) - (s = 01(6)) + wa(s5) - (s — 01(€))? (6.50)

where the functions w; and wy arise from the remainder terms and satisfy |w;(£;s)| ~ 2F for i = 1,
2. It is convenient to define the functions

a(&;5) = ug1(§) +w2(&35) - (s — 61(8)),
B(&; ) := 2wi (&5 8) — wal(§ss),
so that (6.49) and (6.50) can be rewritten as

((8),6) = ur(§) + (al&s) + B s) - (s = 01(6))) - ~———
(), = a(&s) - (s — 01(6)) (6.52)
The argument splits into two cases:

Case 1: |a(¢;5)| < p?2F~*. By the integral form of the remainder,

s

B(&s) - (s —01(6)° = — ; (O<7(4)(t),£> (s —1) - (£ —0:(8)) dt.

Recall from (6.3) that (y*)(t),£) > 0 for all t € [1,1]. Thus, the integrand in the above display
has constant sign. Furthermore, (6.2) also guarantees that [(y*)(t),£)] ~ 2¥. Combining these
observations,

1B(&s)| ~ 28 for all (&) € supp a4

Thus, provided p is chosen sufficiently small, the hypothesis |o(¢;s)| < p?2¥~¢ and together with
the bound |s — 01 ()| = p2~¢ from (6.42) imply

1B(& 5)lls — 01(6)] — |a(&; 5)| 2 p2"°
Consequently, (6.48) implies that the second term dominates the right-hand side of (6.51) and
therefore |(+/(s),&)| = p32F—3¢.

Case 2: |a(¢;5)] = p?2F~f. Here (6.48) and (6.52) immediately imply |("(s),£)| = p32F—2¢.
Thus, in either case the desired bound (6.41) holds.

b) If 41 = |(2k + £2)/9], then the desired bound follows from Plancherel’s theorem and the van der
Corput lemma with third order derivatives. Indeed, by Lemma 6.4,

(@) (5), )] ~ pV/22~%  for all (&;5) € suppbyy . (6.53)
For the remaining cases, it suffices to show that
(), )] +27 G020y (5) )] 2 2630 forall (¢;s) esuppbyy).  (6.54)
Here the localisation of the symbol ensures the key properties

() ~ p*2570, Jus(€)] ~ 22, s = 01(€) < 27 for all (&) € suppbyy). (6.55)
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By Taylor expansion around 6 (), we obtain

((5),6) = u1(§) + wi(&s) - (s — 01(€))?, (6.56)

('(5),6) = w2(&;5) - (s — 01(8)), (6.57)
where the functions w; and wy arise from the remainder terms and satisfy |w;(&;s)| ~ p'/22F—¢2
for i =1, 2 by (6.53). The argument splits into two cases:

Case 1: |01(¢) — s| < p?2-B0~£)/2_ Provided p > 0 is chosen sufficiently small, (6.55) and the
bound |wi(&;8)] ~ p/225=% imply that the u;(¢) term dominates the right-hand side of (6.56)
and therefore [(7/(s),&)] = p*2k—30,

Case 2: |01(€) — s| = p?2=B0a=2)/2 In this case, the bound |wa(€)| ~ p'/22F= and (6.57)
immediately imply |[(v(s), )| = pP/22k—t2—(B0—{2)/2,

Thus, in either case the desired bound (6.54) holds. O
Lemma 6.13. a) For all0 < { < |k/4], ueZ, 1 <1 <4 and e > 0, we have

[l gy < 27079,

b) For £ = ({1,03) € A(k), v€Z and € > 0, we have

Hm[b;%)]”MOO(RAL) < 9~ (1-e)BlL—2)/2,

Proof. In view of the support properties of the symbols (see Lemma 6.6 and Lemma 6.7), by an
integration-by-parts argument (see Lemma C.2), the problem is reduced to showing
IV (@ (& 8)] S 27 (7 U=ON, (6.58a)

IV (o) bhe(& 9)] sy 27 (@ BaE)2HE) V0N (6.58b)

for all 1 < j <4 and all N € Nj.
For all N € N, we claim the following:

. Forallfesuppgagz , 1 <e <4,
2£‘v]e\;(su)02<€)’7 9~ k+2£|ve () 2(§)|, 9~ k+3f‘ve su 72(5)| <N 2*(k*(4*j)f)N; (6.59)
e For all § € supp; ak 0w 3 <1 <4,
2 VY ()01(©), 27FFVE un ()] sy 27 KTEEION; (6.60)
e For all € suppg by, ,
2ZQ‘VN 92(5”7 2" k+2£2|ve (sv) u2(§)|7 2” k+3£2|ve (sv) u1 2( )| SN 27(k7(4ij)£2)N; (661)
e For all § € supp, bkl,
2(3& —02) /2‘V 91(5)‘ 2—k‘+3f1’vN ) 1({)‘ <N 2_(k_((3_j)(3€1—62)/2-"—(2)VO)N' (662)
e] s,, ’ sl, ~

Once the above claims are established, the derivative bounds (6.58a) and (6.58b) follow directly
from the chain and Leibniz rule.

In order to prove (6.59)-(6.62) we work with the unified framework introduced in §6.4.

We start with (6.59) and (6.61). Given n, s € R, recall the set Za(k,n;s) introduced in (6.19).
In particular, if § € Za(k, n; s), then £ € suppg ay and ¢ lies in the domain of 62 and satisfies

02(6) —s| <27 and  Jug(€)] S 287 (6.63)
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From the discussion following (6.19), we know that
Suppy al,, S Za(k,b;s,) forl<ie<4 and suppg by, S o (k,Ez; sy).

Let £ € Zp(k,n;s) and for 1 < j < 4 define v; := e;j(s). The bounds (6.59) and (6.61) amount
to proving that

2NV, 0O 27NNV a(€)], 27V ua(€)| s 27 ETEIMN (6.64)
hold for all N € N. These bounds follow from repeated application of the chain rule, provided

Ky ™ 0 62(¢), )] 2 2, (6.652)
Ky 0 05(€), &) < 2FTE), (6.65b)
(Y5 0 05(8), vj)] Sxe 25 (6.65¢)

hold for all K > 2. In particular, assuming (6.65a), (6.65b) and (6.65¢c), the bounds in (6.64)
are then a consequence of Lemma B.1 in the appendix. More precisely, the desired estimates in
(6.64) correspond to (B.2) and two separate instances of (B.4) whilst the hypotheses in the above
display correspond to (B.1) and (B.3). Here the parameters featured in the appendix are chosen
as follows:

g h A B M1 M2 e

k— k— —k+(4—j
7(3) ,_y// ok—n | 9k—2n | 9—k+(4—j)n | 9n v;

7(3) '7/ 9k—n | 9k=3n | 9—k+(d—j)n | 9n v;

The conditions (6.65a), (6.65b) and (6.65¢) follow directly from the definition of Za(k,n;s).
Indeed, (6.65a) and the K > 4 case of (6.65b) are trivial consequences of the localisation of the
symbol a;. The K = 3 case of (6.65b) follows immediately since (y(3) o 6,(£),€) = 0 and the
K =2 case of (6.65b) is just a restatement of the condition |uz(¢)| < 282" from (6.63). Finally,
(4.13) together with the 6 localisation hypothesis from (6.63) imply that

(Y5 0 02(6), )l Sic [02(8) — 5|V g 27 (IO
which yields (6.65¢).

We next turn to (6.60) and (6.62). Given n = (n1,n2) € R? and s € R, recall the set Z1(k, n; s)
introduced in (6.21). In particular, if § € Z1(k,n; s), then £ € supp; aj, and  lies in the domain of
01 and satisfies

61(6) sl <27 and  Juza(§)] ~ 2V (6.66)

From the discussion following (6.21), we know that

Suppy aﬁ}m S Ei(k, 0 l;s,) fore=3,4 and suppgby, S =1 (k:, 3&2_62,62; 5,,).

Let { € Z1(k,n; s) where n = (n1,n2) for some 0 < ng < ny and for 1 < j < 4 define v; := ej(s).
The bounds (6.60) and (6.62) amount to proving that

2|V 01(E)], 27T Ty (¢)] sy 27 (T (Bmmina) VO (6.67)

hold for all N € N. These bounds follow from repeated application of the chain rule, provided
(Y o 61(€),6)] 2 2572, (6.68a)
() 0 01(8), )] S 2FTMIETH T2, (6.68b)

059 0 01(€), 03] e 2@ na)vo (6.65¢)
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hold for all K > 2. In particular, assuming (6.68a), (6.68b) and (6.68c), the bounds in (6.67) are
then a consequence of Lemma B.1 in the appendix. More precisely, the desired estimates in (6.67)
correspond to (B.2) and (B.4) whilst the hypotheses in the above display correspond to (B.1) and
(B.3). Here the parameters featured in the appendix are chosen as follows:

g h A B M1 M2 e

,y// ,.Y/ 2’677’),171’1,2 2k72n17n2 27k+((37j)n1+n2)v0 2TL1 ,Uj

The conditions (6.68a), (6.68b) and (6.68c) follow directly from the definition of =Z;(k,n;s).
Indeed, (6.68a) and the K = 3 case of (6.68b) are just a restatement of the condition |us1(§)| ~
2F="2 from (6.66). The K > 4 case of (6.68b) is a trivial consequence of the localisation of the
symbol aj whist the remaining K = 2 case of (6.68b) follows immediately since (y" 06;(£),&) = 0.
Finally, (4.13) together with the 6; localisation hypothesis from (6.66) imply that

(/) 0 601(€),v5)] S [01(8) — 5|9 7F)V0 < 2lG=KIVOm
which, by directly comparing exponents, yields (6.68c). O
Lemma 6.12 and Lemma 6.13 can be combined to obtain the following LP bounds.

Corollary 6.14. For all 2 < p < o and all € > 0, the following inequalities hold:
a) For all0 < £ < |k/4] and 1 <1 < 4,

1/p _ _
(3 Ilaf D) ey ) 2D
WEZL

b) For all £ = ({1,03) € A(k),

1/p _ 1/
(Z Hm[ ]( )fHLp R4)> < 9~ k/p+(30+62)/2p— (301 —62)(1/2—1/p E)HfHLp(W)-

VEZL

When p = o0 the left-hand P-sums are interpreted as suprema in the usual manner.

Proof. For p = 2 the estimate a) and b) follow by the combining L? bounds from Lemma 6.12 with
a simple orthogonality argument, as the supports of m[ag éa)] and m[bZ’(;)] are essentially disjoint
for different p and v respectively. For p = oo the estimate is a restatement of the L® bounds
from Lemma 6.13. Interpolating these two endpoint cases, using mixed norm interpolation (see,

for instance, [21, §1.18.4]), concludes the proof. O

6.7. Putting everything together. We are now ready to combine the ingredients to conclude
the proof of Proposition 6.5.

Proof of Proposition 6.5. a) Let 1 < < 4. By Proposition 6.9 a), for all 2 < p < 12 and all € > 0

one has

1/
Imla,e (D) ] o R4)—H mlalf, JD)f| <2ty gum [0t JD)F )

LP(R%)
Moreover, for all u € Z, Lemma 6.11 a) implies that
Imlaf Il aro(@sy Snep Imlalames) +27F for all N e N.

Combining the above, we obtain

1/p _
Il e )(D) Loy Sep 2024 (S il @) D) i) + 27U logey,
UEZ
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which, together with Corollary 6.14 a), yields
Imlake. (D) flLe@s) Sep 27k/p7€(1/273/p72€)HfHLP(]R‘*)'
Since € > 0 was chosen arbitrarily, this is the required bound.
b) By Proposition 6.10, for all 6 < p < 12 and all £ > 0 one has
- ) (1— y 1p
(b e)(D) o sy e 2202 1P 04522 (S by J(D) 11 5 )

VEZ

Moreover, for all v € Z, Proposition 6.11 b) implies that
[mIb% el oty Snep ImIBEE Mamesy + 275 for all N e N.

Combining the above, we obtain

1
I lb (D) fl ey Sepp 2202040592 (S i[O YD) £ )

veZ
+ 2_k||f||LP(R4),
which, together with Corollary 6.14 b), yields
[m[br.e] (D) fl Loy Sep 27 X722 =0URZR=2 | £ ) ).
Since € > 0 was chosen arbitrarily, this is the required bound. ]
We have established Proposition 6.5 and therefore completed the proof of the J = 4 case of
Theorem 4.1.
7. PROOF OF THE DECOUPLING INEQUALITIES

This section is devoted to the proof of Theorem 4.4.

7.1. Decoupling inequalities for non-degenerate curves. The central ingredient in the proof
of Theorem 4.4 is the decoupling theorem of Bourgain—-Demeter—Guth [5]. We begin by recalling
the statement of (one formulation of) this result. Given a non-degenerate curve g € C4t1(I;RY)
and 0 < r < 1, an ‘anisotropic r-neighbourhood’ of the curve is constructed as follows.

Definition 7.1. For each s € I define the parallelepiped
d
afs;r) = {¢ e RE: € =g(s) + Z )\jrjg(j)(s) for some \; € [-2,2], 1 < j < d};
j=1

such sets are referred to as r-slabs.

In some cases it is useful to highlight the choice of function g by writing a(g; s;r) for a r-slab
a(s;r). Note that the formula for the parallelepiped «(s;r) can be expressed succinctly in terms
of the matrix [g]s, introduced in (2.1). In particular,

a(s;r) = g(s) + [g]s.r (=2, 2]9). (7.1)
An anisotropic r-neighbourhood of the curve g is formed by taking the union of all the r-slabs
as s varies over 1.

Definition 7.2. A collection A(r) of r-slabs is a slab decomposition for g if it consists of precisely
the r-slabs a(g; ;1) for s varying over a r-net in I.

With the above definitions, the decoupling theorem may be stated as follows.
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Theorem 7.3 (Bourgain—Demeter—Guth [5]). Let g € B4(d) for some 0 <§ « 1,0 <r <1 and
A(r) be a r-slab decomposition for g. For all2 < p < d(d+ 1) and € > 0 the inequality

H ;()fa oy ¢ r_E( > \IfaHip(Rd)>l/2 (7.2)
ae T

acA(r)
holds for any tuple of functions (fa)aea(r) Satisfying supp faca.

Remark. This is a slight variant of the decoupling inequality of Bourgain—-Demeter—Guth [5] which
can be found, for instance, in [10].” It is also remarked that the result holds for general non-
degenerate curves, although not in the uniform fashion described here. Note, in particular, that
by restricting to the model curves g € &,4(0) for 0 < § « 1, the decoupling inequality (7.2) holds
with a constant independent of both the choice of g and 4.

7.2. Geometric observations. In order to relate Theorem 4.4 to the Bourgain—-Demeter—Guth
result from Theorem 7.3, we first relate the Frenet boxes m4_1~(s;7) to certain regions which
are more similar in form to the slabs «a(g;s,r) introduced above. The Frenet boxes mq_1(s;7)
do not correspond precisely to slabs but to related regions referred to as plates. These plate
regions are formed by extending d-dimensional slabs into n-dimensions by adjoining additional
long directions. Moreover, the plates are naturally defined in relation to a cone generated over a
family of non-degenerate curves g;: I — R<,

A family of cones. Let v € ,(5) for 0 < § « 1 and e;: [-1,1] — S" 1 for 1 < j < n be
the associated Frenet frame. Without loss of generality, in proving Theorem 4.4 we may always
localise so that we only consider the portion of the curve lying over the interval I = [—§,d]. In
this case

e;j(s) = €;+ 0(9) forl<j<n (7.3)

where, as in Definition 2.1, the €; denote the standard basis vectors.

Here we introduce certain conic surfaces which are ‘generated’ over the curves s — e;(s). The
following observations extend the analysis of [17], where a cone in R? generated by the binormal
vector es features prominently in the proof of the 3-dimensional analogue of Theorem 1.1.

Let 2 <d <n—1 and consider the map I': R*~¢ x [ — R” defined by

n

F(/\¢ S) = Z )‘jej(s)v X = ()‘d-i-la'--a)\n)‘
Jj=d+1

Restricting to A\g4+1 bounded away from zero, this is a regular parametrisation of a (n — d + 1)-
dimensional surface in R", which is denoted I'j, 4. Indeed, by the Frenet formulee,

oar o i -
75 N 8) = —Aarika(s)ea(s) + Ea(A, s),
r -
;\j()\,s)—ej(s), d+1<j<n,
where F4(X, s) lies in the subspace (eq;1(s), ..., en(s)). Thus, provided Ag.q is bounded away

from zero, the non-vanishing of %, ensures that these tangent vectors are linearly independent.
Reparametrisation. It is convenient to reparametrise I', 4 so that it is realised as a surface

‘generated’ over an alternative family of curves which is formed by graphs. To this end, let

IMore precisely, the general version of the decoupling theorem here follows by combining Theorem 1.2 and Lemma
3.6 from [10].
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A: I — GL(n — d,R) be given by

-1
ed+1,d+1(5) en,d+1(5)

A(s) == : : )
ed—i—l,n(s) e en,n(s)

where e; j(s) denotes the jth component of e;(s). Provided ¢ is chosen sufficiently small, (7.3)
ensures that the above matrix inverse is well-defined and, moreover, is a small perturbation of the
identity matrix. Define the reparametrisation

(X, s) :=[(A(s)X,s)  forall (X,s) e R x I. (7.4)
Consider the restriction of this mapping to the set R/ , R" % consisting of all vectors X =
(Ad+1,-- -5 An) satisfying

1/4<Xgy1 <2 and || <2 ford+2<j<m (7.5)

under this restriction, I' is a regular parametrisation by the preceding observations.
The mapping (7.4) can be expressed in matrix form as

-

(X, s) = [eari(s) -+ enls)]- A(s)A, (7.6)
= [Gara(s) -+ Gu(9)] X,

where the Gj: I — R" (which form the column vectors of the above matrix) are of the form

Gj(s) = {gj(()s)} + &

for some smooth function g;: I — R,

Non-degeneracy conditions. Given a = (ag+1,---,an) € R;, 4, define
n n
Ga = Z a; - G and Ja 1= Z a; - gj, (7.7)
j=d+1 j=d+1

noting Ga(s) = I'(a,s). The curve ga: I — R? is non-degenerate. To see this, first note that
%(X, s) can be expressed as a linear combination of vectors of the form
[ef)i(s) - ()| 4K 0<e<i, (7.8)

where A%) denotes the component-wise kth-derivative of A. Indeed, this follows simply by applying
the Leibniz rule to (7.6). Consequently, ?9:5 (A, s) must lie in the subspace generated by the columns
of the left-hand matrix in (7.8), where ¢ is allowed to vary over the stated range. In particular,

one concludes from the Frenet formulse that

T - :
pw (A, s) €{eqr1—i(s),...,en(s)) for 0 <i<d. (7.9)
On the other hand, the Frenet formule also show that the e4;1_;(s) component of ‘gg (X, s) arises

only from the term in (7.8) corresponding to ¢ = i and

oT - g L
Gais)earis) = (D' [T fels) ) (Aa(s). D, (7.10)

l=d+1—i
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where A1 (s) denotes the first row of A(s). Recall A is a small perturbation of the identity matrix.
Thus, under the constraint A € R}, ; from (7.5), if § is chosen sufficiently small, then (7.10) implies
that

|<f3 o (Xs),eqpii(s))] ~ 1 forall 1 <i<d. (7.11)

'<X 5), 1
0T (a,

Thus, combining (7.9) and (7.11), i <
s) e R4 x {0} for i > 1,

independent. Moreover, fixing X = a and noting that G{ )( ) =
one concludes that

1 < d, are linearly

|det[gals| 2 1 (7.12)
for all s € I, which is the claimed non-degeneracy condition. Note this holds uniformly over the

choice of original curve v € &,,(d) and over a€ R;, ;.

Frenet bozxes revisited. From the preceding observations, the vectors G;(f)(s) for 1 <i<dform a
basis of R? x {0}"~¢. Fixing £ € R” and 7 > 0, one may write

n d
Z §Gji(s) = Z rszgf)(s) (7.13)
j=d+1 i=1
for some vector of coefficients (11, ..., nq) € R%. The powers of r appearing in the above expression

play a normalising role below. For each 1 < k < d form the inner product of both sides of the
above identity with the Frenet vector eg(s). Combining the resulting expressions with the linear
independence relations inherent in (7.9), the coefficients 7, can be related to the numbers (&, ex(s))
via a lower anti-triangular transformation, viz.

(&, e1(s)) 0 o (G (s),en(s)] [ rm
: = : : e (7.14)
(& eals)) GV (s),eq(s)y - (GP(s),eq(s)] L

Thus, if £ € m4_1,(s;7), then it follows from combining (4.14a) and (7.11) with (7.14) that |n;| <
for 1 < i < d, provided § > 0 is sufficiently small. Similarly, the conditions (4.14b), (4.14c) and
the localisation (7.3) imply that

Ta-1,(57) € Rpa = [-2,2]7 x R}, 4

The identity (7.13) can be succinctly expressed using matrices. In particular, collect the func-

tions g; together as an (n — d)-tuple g := (ga+1,---,9n) and, for s € I and r > 0, define the n x n
matrix
[9a]sr  &(5)
= ' . 7.15
[g]a,s,r ( 0 Infd ( )

Here the block [ga]s,, is the d x d matrix (2.1) with  here taken to be ga as defined in (7.7), whilst

g(s) is understood to be the (n — d) x d matrix with jth column equal to g;(s) and I,_4 is the

(n —d) x (n — d) identity matrix. With this notation, the identity (7.13) may be written as
§=[glasr-n  where n=(n1,..., 04 8ar1,- - &n)-

Moreover, if £ € m4_1 ,(s;7), then the preceding observations show that 1 in the above equation
may be taken to lie in a bounded region and so

Ta-14(57) S [ [8lascr([~2:2]") N R, (7.16)
aeRiL’d
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where C' > 1 is a suitably large dimensional constant. The right-hand side of (7.16) should be
compared with the matrix definition of the slabs used in the Bourgain—Demeter—Guth theorem
from (7.1).

7.3. Decoupling inequalities for cones generated by non-degenerate curves. Here the
geometric setup described in §7.2 is abstracted. We first generalise the definition (7.4) to arbitrary
cones generated over a tuple of curves (gg4+1,---,9n)-

Definition 7.4. Let 2 < d < n—1, g = (g4+1,---,9n) be an (n — d)-tuple of functions in
CHYI;RY) and I'g denote the codimension d — 1 cone in R"™ parametrised by

(X, s) — Z )\j-({gjés)}+é’j) forXZ()\dH,...,)\n)ER;,d and se 1.
j=d+1

In this case, I'g is referred to as the cone generated by g.

We now take into account the non-degeneracy condition established in (7.12). Given a =

(@d+1,---,an) € R, 45 and 0 < § « 1 consider the collection & () of all (n — d)-tuples of
functions
g = (9a+1,-- -, gn) € [CTTH LR
with the property
Ja = Z aj; - gj € @d((5>, (717)

j=d+1
where &4(d) is the class of model curves introduced in §2.

In (7.12) we showed that the curves g, relevant to our study are non-degenerate, which is a
weaker condition than g, € ®4(0) (provided 0 < § « 1). However, by a localisation and scaling
argument similar to that used in §2, we will always be able to assume the condition (7.17) holds
in what follows (see the proof of Lemma 7.9 for details of the rescaling).

Given g € &}, ;(6), s € [-1,1] and 0 <r < 1, define the n x n matrix [g]a,s, as in (7.15); that

) e (718)

In—d
In view of (7.16), one wishes to study decoupling with respect to the plates
0(s;r) = [glasr([—2,2]") N R
In some cases it will be useful to highlight the choice of function g by writing 6(g; s; r) for (s;r).
Note that each of these plates lies in an r-neighbourhood of the cone I'g. We think of the union
of all plates 6(s;r) as s varies over the domain [—1, 1] as forming an anisotropic r-neighbourhood

of I'g, similar to the situation for curves described in §7.1.
Rather than work with the (s;r) directly, certain truncated versions are considered.

Definition 7.5. For 0 <r <1, a = (ag41,...,an) € R} ; and K > 1 an (a, K)-truncated r-plate
for I'g is a set of the form

025 (sir) i = [glasr ([-2,2]") N Qa, K1)
for some s € I and

Q(a,K‘l) = {geR”:|§j—aj| <K ! ford+1<j<n}.

Definition 7.6. A collection © 2 (r) of (a, K)-truncated r-plates is an (a, K)-truncated plate
decomposition for g if it consists of 0®%(g; s;r) for s varying over a r-net in I.

Theorem 4.4 is a consequence of the following decoupling inequality for cones I'g.
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Proposition 7.7. Let 2 < d < n—1 and € > 0. There exists some integer K > 1 such that
forall0 <r<1,a€eR],; and g € & ;(0) for 0 < & « 1 the following holds. If 0K (r) is an
(a, K)-truncated r-plate decomposition for I's and 2 < p < d(d + 1), then

1/2
IS ol ser (2 Mol
)

00 2K (r 00 2K (1)
holds for any tuple of functions (fg)g(;@a,l((r) satisfying supp fg c 4.

Proposition 7.7 follows from the Bourgain—-Demeter—Guth result (namely, Theorem 7.3) via
an argument from [1], where decoupling estimates for the light cone in R™ were obtained as a
consequence of decoupling estimates for the paraboloid in R”'. The key observation is that,
at suitably small scales, the cone I'g can be approximated by a cylinder over the curve g. This
approximation is only directly useful for relatively large r values, but rescaling and induction-on-
scale arguments allow one to leverage this observation in the small r setting. Arguments of this
kind originate in [17] and have been used repeatedly in the context of decoupling theory: see, for
instance, [2, 11, 12, 15].

The details of the proof of Proposition 7.7 are postponed until §7.5 below. In the following
subsection, we show that Proposition 7.7 implies Theorem 4.4.

7.4. Relating the decoupling regions. Theorem 4.4 may now be deduced as a consequence of
Proposition 7.7 using the geometric observations from §7.2.

Proof of Theorem 4.4, assuming Proposition 7.7. First note that it suffices to show the desired
decoupling inequality in the restricted range 2 < p < d(d + 1); the estimate for the remaining
range d(d + 1) < p < oo then follows by an interpolation argument and a trivial estimate for
p = 0.

Let v € &4(0) for 0 < § « 1. As previously noted, we may restrict attention to the portion of
over I = [—§, ] so that the Frenet vectors satisfy (7.3). Fix2<d<n—1,0<r <1 and Py_1(r)
a Frenet box decomposition of ~.

Define g = (g4+1,---,9n) as in §7.2 so that the g, are non-degenerate. Let € > 0 be given and
take K > 1 an integer satisfying the properties described in Proposition 7.7.

Let (frx)rep, ,(r) De a tuple of functions satisfying the Fourier support hypothesis from the
statement of Theorem 4.4. If 7 = mq_1 (s;7) € Pg—1(r), then, recalling (7.16), we have

supp fw - 7Td71,'y(3; T) = ﬂ [g]a,s,Cr([_Qv 2]71) N Rn,d- (719)

!
aG’Rn’d

The frequency domain is decomposed according to the Q(a, K~!) from Definition 7.5. In par-
ticular, let

LK) = K- lzn—d A Ria

so that the sets Q(a, K~!) for a € R, 4(K) are finitely-overlapping and cover of R, 4. Form a
smooth partition of unity (¢ x—1)acr’ L) adapted to the sets Q(a, K1) and define the frequency
projection operators P, via the Fourier transform by

(Paf)” = tax—1 - f.

These operators are bounded on LP for 1 < p < o uniformly in a and K and, furthermore,

fr= >, Pafr forallme Py y(r).
aeR;L’d(K)
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Since #R;h 4(K) Snse 1, by the triangle inequality and the LP boundedness of the Py, it suffices
to show that

1/
| Y Pafalisn Suaer @770 N 1Pafallien) (7.20)

T€P4—1(r) T€Py_1(r)

uniformly in a € R’n,d(K ). However, recalling (7.19), each function P, f, has frequency support
in the set

625 (s,Cr) = [glascr ((-2,2]") N Qa, K1)
and so an ¢ version of (7.20) follows as a consequence of Proposition 7.7.1° The desired £7-
decoupling (7.20) follows by applying Holder’s inequality to the £2-sum. ([l

7.5. Proof of Proposition 7.7. It remains to prove the decoupling Proposition 7.7. This is
achieved using the argument outlined at the end of §7.3.

Definition 7.8 (Decoupling constant). For2<d<n-1,0<r<1,p>2,0<d<«1,a€eR,,
and K > 1 let ®2 ,(K;r) denote the infimum over all C =1 for which

1/2
IS Solpen<c( X Voldn)
(r)

feOa K (r 00 a: K (r)
holds whenever:
i) ©3K(r) is an (a, K)-truncated r-plate decomposition for T'g for some g € &5 4(9),
i) (fo)oco=x(r) 15 a tuple of functions satisfying supp foco.
Thus, in this notation, Proposition 7.7 states that for all € > 0 there exists some K > 1,
depending only on n and ¢, such that

mal(KGr) Scr e for all a € R}, , (7.21)

Remark. The definition of the decoupling constants also depends on p and d but, for simplicity,
these parameters are omitted in the notation.

In conjunction to Theorem 7.3, one needs a simple scaling lemma.

Lemma 7.9 (Generalised Lorentz rescaling). If 0 <r < p <1, then
na(KGr) S D5 4(K 0)D75 4(K57/p).

Temporarily assuming this result, Proposition 7.7 follows by a simple induction-on-scale argu-
ment.

Proof of Proposition 7.7. Lete > 0,0 < « land a = (ag41,...,an) € R;’d be given. Henceforth,
K = K(e) > 1 is thought of as a fixed number, depending only on n and e, which is chosen
sufficiently large to satisfy the forthcoming requirements of the proof. It will be shown, by an
induction-on-scale in the r parameter, that (7.21) holds for all 0 < r < 1.

If (100K)~% < 7 < 1, then it follows from the triangle and Cauchy-Schwarz inequalities that

na(K;r) < C(e)
for some constant C(¢) > 1 depending only on n and e. This serves as the base case of an inductive
argument.

It remains to establish the inductive step. To this end, fix some 0 < r < (100K)~¢ and assume
the following holds.

1OStrictly speaking, Proposition 7.7 requires the additional hypothesis g € & ;(0). However, by a rescaling
argument (see the proof of Lemma 7.9), the decoupling result generalises to arbitrary g for which ga is non-degenerate
(albeit no longer with a uniform constant).
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Induction hypothesis. If ro > 2r, then D3 ;(K;ro) < C(e)r;*.

Given 0 < r < p < 1/2, one may combine the generalised Lorentz rescaling lemma with the
induction hypothesis to conclude that

nd(Kir) D5 4(K5p)D5 4(K;1/p) < Ce)p™r D5, 4(K p). (7.22)

Fix p := K~ Fayourable bounds for Qz’d(K; p) can be obtained in this case via an appeal

to Theorem 7.3. Let proj, : R™ — R denote the orthogonal projection onto the coordinate plane
spanned by €1,...,é;. The key observation is that any (a, K)-truncated p-plate 825 (g;s;p) on
I'g essentially projects into a p-slab a(ga;s; p) on ga = Z?: d+1@j - gj under this mapping, where
a(ga; s; p) is as defined in Definition 7.1. In particular,

proj, 0™ (g; s;p) € a(ga; 5;Cp) (7.23)

for some choice of constant C' > 1 depending only on n. To see this, fix £ € 25 (g; s; p) and note
that £ = [g]a,s,p - 7 for some 7 € [—2,2]" whilst

& —aj| <1/K ford+1<j<n, (7.24)
by Definition 7.5. By the definition of the matrix [g]a,s,, in (7.18), it follows that
& =[galsp-n'+ D nig;(s),

j=d+1
& =nj ford+1<j<n

where ¢ := proj, € and 7 := projyn € [-2,2]%. In particular,

&' = 9a(s) = lgalup (W + lgalih - D (0 —a)95(5))

Jj=d+1
and, for the choice of p = K ~1/? specified above,
n n
[galsp - D, (5 —ai)gi(s)| < llgalsplop - X 1& —ajllg;(s)]
j=d+1 j=d+1

<p K<,

The second inequality follows from the hypothesis ga € ®4(d) from (7.17), which implies that
H[ga];})HOp < p~? (with a uniform constant), and the condition (7.24). Recalling Definition 7.1, it
follows that & € a(ga; s; Cp), as claimed.

Let ©2%(p) be an (a, K)-truncated p-plate decomposition of 'y and (f3)gee aK(p) be a tuple of

functions satisfying supp fg < 0. For any 2 < p < d(d + 1) and & > 0, by (7.23) and Theorem 7.3

it follows that
1/2
| 2 ol ey <2 052 Mol @)

0O a K ( 0cO K (p)

for all " € R»~¢. Taking the LP-norm of both sides of this inequality with respect to 2 and using
Minkowski’s inequality to bound the resulting right-hand side, one deduces that

Qﬁ,d(K; p) Sz pE. (7.25)
Taking € := ¢/2 in (7.25) and substituting this inequality into (7.22), one deduces that
n (k) < (Cop?)C(e)r,
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where the C. factor arises from the various implied constants in the above argument. Thus, if K
is chosen from the outset to be sufficiently large, depending only on n and ¢, then
CEPE/2 _ CEK_E/2d <1
and the induction closes. O

It remains to prove the Lorentz rescaling lemma. Before presenting the argument, it is useful
to introduce an extension of Definition 2.1 to tuples of curves g.

Definition 7.10. Let g = (g4+1,---,9n) € Qﬁ;d(é) and g = Z?:dﬂ aj - g5, as in (7.17) and
(7.18). Define the (a;b, p)-rescaling of g to be the (n — d)-tuple

Sabp = (Gabpdils---»Jappn) € [CTHI, RN
given by
8abo(t) = [9al,, (8(b+ pt) — g(b)). (7.26)

Here gap,,(t) and g(t) are understood to be the d x (n — d) matrices whose columns are the
component functions of gap, and g, respectively, evaluated att e I.

As a consequence of this definition, the function

n
Gab,p - = Z aj - Gab,p,j

j=d+1
is precisely the (b, p)-rescaling of g := Z?:d 4+1@; - gj- Thus, the notation gap, used here is
consistent in the sense that gap, = (ga)s,, and, furthermore, since gap , := (gap,p)a, One has
s
[ga,b,p]a,u,h = [ga,b,p]u,h ga,b,p( ) . (7.27)
0 | P

Proof of Lemma 7.9. Fix g € &2 ,(§), an (a, K)-truncated r-plate decomposition © % (r) for 'y
and let (fp)geoarx () be a tuple of functions satisfying supp fo < 0. By a simple pigeonholing
argument, there exists an (a, K )-truncated p-plate decomposition © % (p) such that

H Z )f9 LP(]R") s H Z f@/

00 K (r 0'e® 2K (p) Lr()
where
for = Z fo forall @ € @K (p).
0e0 K (r)
0co’
Since supp for < @, by definition
1/2
|2 ol SORAEA( X bt (7.28)
O 2K (1) 0'e©@ 2K (p)
The goal here is to show that
a 1/2
ol < D505t/ (Y 1folinn) (7.29)
0e© X (p)
0co’

for each @ € ©2K(p). Indeed, once this is established, by combining (7.28) and (7.29) with the
definition of ©F ;(K;r), one deduces the desired result.

Fix an (a, K)-truncated p-plate (b; p) € © % (p) and recall that
0(b;p) = {€ € R™: ([glapp) '€ € [-2,2]"} 0 Q(a, K7
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for Q(a, K~') as defined in Definition 7.5. Note that the preimage of 6(b;p) under the [glap,,
mapping is the set

-1 n _
([g]a,b,p) 0(b;p) =[-2,2]" nQ(a, K 1)-
On the other hand, the (a, K)-truncated r-plate 6(s; ) = 0% (s; r) is transformed under ([g]a,) !

into
DN -1 n —
(€€ R ([glasr) " [glasp€ € [-2,2]"} A Qla, K ). (7.30)
The key observation is that

s=b )_1 (7.31)

r
pp

([g]a,s,r)_l . [g]a,b,p = ([ga,b,p]a7

so that (7.30) corresponds to an (a, K)-truncated r/p-plate for the cone generated over the rescaled
curve tuple gayp ,. Once this established, (7.29) follows easily by a change of variable. Indeed,
taking ' = 0(b, p) and defining the functions fy and fy for # € © ¥ (r) via the Fourier transform
by

(fo)" = foolglap, and  (fo)” := foolglapp

by a linear change of variable the desired inequality (7.29) is equivalent to

. N 1/2
ol < D5aKsr/) (Y, Loldan)
9e© > X (p)
0co’

However, since the preceding observations show that the fg are Fourier supported on (a, K)-
truncated r/p-plates for the cone generated over the rescaled curve tuple ga ,, this bound follows
directly from the definition of the decoupling constant.

To prove (7.31), first note that it suffices to show

[g]a,b,p : [ga,b,p]a,s—b = [glas.r

P

o3

)

Recalling (7.27) (taking u := (s — b)/p and h := r/p) and carrying out the block matrix multipli-
cation, this is equivalent to the pair of identities

[ga]b,p : [ga,b,p] S;b% = [ga]s,h (7'323)
[galp - By (1) + (D) = g(s). (7.320)

Note that (7.32a) is an identification of d x d matrices, whilst (7.32b) is an identification of d x (n—d)
matrices.
Recall the definition of the matrix

[9ab.p)e = [ggg,p(w) gédg,p(fc)]-

From the discussion following Definition 7.10, the curve gay , is as defined in Definition 2.1 and,
in particular, is given by

Gab,p(t) = [ga]b_,; (Qa(b +pt) — ga(b)).
Combining these definitions with the chain rule,

[9ab,ple = [ga];; “[9alv+pz,p for z € R with b+ pz € [—1,1].

Taking x = S—;b and right multiplying the above display by D, , immediately implies (7.32a). On
the other hand, (7.32b) follows directly from the definition (7.26). O
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APPENDIX A. REDUCTION TO A FREQUENCY LOCALISED ESTIMATE

Here we discuss the passage from frequency localised used in §4.2. In particular, we fill in the
details of the argument reducing Theorem 1.1 to Theorem 4.1. This follows very quickly by using
a special case of a result proved in [16].

A.1. A Calder6n—Zygmund estimate. For each k € N we are given operators T} defined on
Schwartz function f € S(R™) by

Tef @)= | Kilwy)fy)dy
where each K, is a continuous and bounded kernel (with no other quantitative assumptions). Let
¢ e S(R™), define ¢y := 2¥7¢(2F-) and set Py f := (g * f.
Theorem A.1 ([10]). Lete >0 and 1 < py < p < 0. Assume for some A = 1 the operators Ty,
satisfy
sup 2570 | Ty | oo (rn) - Loo (m) < A,
k>0

sup 27| T | Lo (ny— Lo(re) < A
k>0

Furthermore, assume that there exist B = 1 and for each cube Q a measurable set £q such that
|€o| < Bmax{diam(Q)"!, diam(Q)"}
and such that, for every k € N and every cube Q with 2Fdiam(Q) > 1,

sup/ | Ky (z,y)| dy < Amax{(2"diam(Q))¢,27}. (A1)
zeQ R”\(‘:Q

Then for every r > 0 we have

H(éz’“/ﬂpﬂkfw)” (. @1 1)

for any sequence of functions (fi)j, € £P(LP), where the implicit constant depends only on A, B,
T} 57 p7 p07 n andC'

A.2. Application. We consider a regular curve given by ¢ — ~(t), t € [0,1], and let A, be as in
(1.1); that is, Ay f = py = f.
Let 8, € CP(R™) be, say, radial, supported in {1/2 < |¢] < 1} and Bo(&) > 0 for 2712 < |¢| <
21/2 and define Lif:= B.(277 D) f. We make the assumption that for some pg > 2 we have
| LAy £l pro ey < C27970) £l poomny, 4 > 0. (A.2)

For a non-degenerate curve in R* such inequalities were proved in the previous sections.
Theorem A.1 facilitates the following reduction.

Proposition A.2. Assumption (A.2) implies that A, maps LP boundedly to Lzl’/p forpg < p < 0.

This result can be used to complete the argument described in §4.2 and thereby reduce Theo-
rem 1.1 to Theorem 4.1.

Proof of Proposition A.2. Let T' := {~(t) : t € I} where I is a compact interval containing the
support of x. Let @ be a cube with center xg and define

&g = {yeR" : dist(y — ¢, I') < 10diam(Q)}.
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Thus if @ is small then &g is a tubular neighborhood of zg + I' of width O(diam(Q)). It is not
hard to see that there is a constant C' (depending on B) such that

diam(Q)"~1  if diam(Q)

<1,
diam(Q)" if diam(Q) > 1

meas(Eg) < C {

Let v e CP(R™) be supported in {x : |z| < 1/4}, with the property that ©(£) > 0 on the support
of Bo, 0(0) = 0 and V5(0) = 0.1 Let vy := 2*"0(2¥-) and define
Tipf(x) := vg * py = f and Ki(z,y) := v * py(z — y).
By the support properties of vy we have
Ki(z,y) =0 ifxe @, yeR"\E and 2k diam(Q) > 1

and thus (A.1) holds trivially.
We claim that the assumption (A.2) also implies

Sup 25720 | T | Lo (R ) L0 () < 0.
eN

To see this, choose 3, € C%(R™) supported in {¢ : 1/2 < |¢| < 2} such that
Y Bo(2778)e(277€) = 1
JEZ

~

for all £ # 0 and define L; := §,(277D). Thus,

| Tl zro o < D NLGLi Tkl om0 < Y L As | oo oo | L1
JEL JEZ
By straightforward calculations, using scaling and the cancellation and Schwartz properties of v
and F~'[B,], one has | Ljvy|1 = O(2719=*) for all j € Z. Using this together with the hypothesis
(A.2), we get
| Tl ropro < D° min{277/P, 1}27 1 < 9=k/p;
JEZ

note for j < 0 we use the trivial bounds |L;A, fll, < | fllp. Since |Tk| o= = O(1), interpolation
therefore yields

iuNp Qk/pHTkHLp(Rn)_,Lp(Rn) < forall pp < p <
€

Let § € C®(R™) be supported in {€ : 1/4 < |¢| < 4} such that 8,8 = S, and py < p < 0.
Defining fi := 8(27*D)f, by Theorem A.1 we obtain

(S o), - [(S2mnr) ",
(i 1FelEe)”
k=1

D8 1

(A.3)

<

LTy construct such a function take any compactly supported real valued u € C(R™) with ﬁR" u = 1, form

182D £ gy

el
Il
—_

uc = C%u(C ) for sufficiently large C to ensure @ic > 0 on supp 8, and then take the Laplacian, v = Auc, to also
get the condition ©(0) = 0.
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Since " — (2 for r < 2 and ¢? — (P for 2 < p, we deduce that

H( 2127152 D))y <€ S lse o))
k=1

This, together Wlth the obvious low frequency LP estimates, yield the asserted Sobolev bound via
Littlewood—Paley inequalities. ]

Lr(R7)

Remark. Using Besov and Triebel-Lizorkin spaces one gets from (A.3) the stronger inequality
Ay: By, — FI%"p
for all r > 0.

APPENDIX B. DERIVATIVE BOUNDS FOR IMPLICITLY DEFINED FUNCTIONS

The following lemma is a particular instance of a more general lemma on derivative bounds for
implicitly defined functions found in [, Appendix C].

Lemma B.1. Let Q < R"™ be an open set, I € R an open interval, g: I — R™ a C® mapping and
y: Q@ — I a C*® mapping such that

{(goy(x),x) =10 for all x € Q.

Foree S" ! let Ve denote the directional derivative operator with respect to x in the direction of
e. Suppose A, My, My > 0 are constants such that

Kg' oy(x),m)| = AMy,
KgMN) o y(x),2)] <y AMY for all N € N and all x € Q (B.1)
g oy(x),e)] <y AM MY
Then the function y satisfies
\VYy(x)| Sy MMy for all z € Q and all N € Ny. (B.2)

Furthermore, for any C® function h: I — R™ for which there exists some constant B > 0 satisfying

h(N) <y BMY
K N Y@,z sy 2 N for all N € N and all x € Q, (B.3)
(KN oy(@),e)| <y BMiM;
one has
(VY(hoy(x),z)| <y BM{Y  for allz e Q and all N € N. (B.4)

The following example illustrates how Lemma B.1 is applied in practice in this article.
Example B.2 (Application to the case J = 3). Let v € &4(8), and 6 : R\{0} — Iy satisfying

("2 0(),&) = 0.

We apply the previous result with g = ~" and h = +'. If B < A the conditions (B.1) and (B.3)
read succinctly as

(7P o0(€),6)] = AMs,
K,Y(HN) 00(£),6| <nv BMY for all NeN and all £ € Q) R4\{0}7

(Y 0 6(€), e
which imply
VEO©) sy MMy and V(Y 0 0(€), )] <nv BM'.
for all N e N and all € € Q « R\{0}.
The applications in the different cases J = 4 are similar, with the choices (g,h) = (7

(g,h) = (v, %) and (g,h) = (", 7).

3)7 ’7”),
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APPENDIX C. INTEGRATION-BY-PARTS LEMMATA

C.1. Non-stationary phase. For a € C(R) supported in an interval I < R and ¢ € C*(I),
define the oscillatory integral

Z|p,a] = / ¢?)a(s) ds.
R
The following lemma is a standard application of integration-by-parts.

Lemma C.1 (Non-stationary phase). Let R = 1 and ¢,a be as above. Suppose that for each
j € Ng there exist constants C; = 1 such that the following conditions hold on the support of a:

)16 >0, |
i) [V (s)] < C;R7U-V|¢@/(s)) for all j > 2,
iii) |a\9)(s)| < C;R7I|¢/(s)] for all j = 0.
Then for all N € Ny there exists some constant C(N) such that
Z[¢,a]| < C(N) - |suppal - R™Y.

Moreover, C(N) depends on C1,...,Cx but is otherwise independent of ¢ and a and, in particular,
does not depend on r.

A detailed proof of this lemma can be found in [I, Appendix D].

C.2. Kernel estimates. The following lemma, which is used to obtain L™ bounds for the mul-
tipliers, is based on integration-by-parts in the & variable.

Lemma C.2. Let a € CCOO(R” x Ip), 0 >0, \; >0 forl < j <mn and {vy,...,v,} be an
orthonormal basis of R™. Suppose the following conditions hold:

i) {seR: (& s) e suppa for some { € R"}| <o,
i) suppe a S {£ € R™ : [(§,v5)| < Aj for 1 < j <n},
iii) |V,f,\7ja(£;s)\ <N /\]-_N for all (€;5) e R" xR, 1 <j <n and N € Ny.
Then
Im[a]llaren gny < o

Here V,, := v-V denotes the directional derivative with respect to £ in the direction of v € S7~1.

Proof of Lemma C.2. For f € .7(R") we have m[a]|(D)f = K|a]* f where the kernel K[a] is given
by

Klal(w) = [ Fa(-33)(a + () ds.
Here F~! denotes the inverse Fourier transform in the ¢ variable. Consequently,
[m[a](D)|areegny < |Ka]|L1mn) < /R |7~ a5 8)] L1 my x(5) ds.
By the hypothesis i) on the s-support, the problem is therefore reduced to showing
Sup IF~ a5 8) | @ny S 1. (C.1)

However, the conditions ii) and iii), combined with a standard integration-by-parts argument,
imply

n n _N
|F 7 a(-;8)(x)] SN <1_[ )\j> (1 + Z )\j|<:n,'vj>|> for all (z;s) e R" x R and all N > 0,
j=1 j=1

from which the desired bound (C.1) follows. O
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