MAXIMAL AVERAGES ALONG HYPERSURFACES:

A new conjecture and almost complete answers in \mathbb{R}^{3}

DETLEF MÜLLER

The study of L^{p}-estimates for maximal averages \mathcal{M}_{S} associated to isotropic dilates of a given, smooth hypersurface S in Euclidean space originated from E.M. Stein's seminal work on dimension free estimates for the Hardy-Littlewood maximal operator, in which he had studied the spherical maximal function.

By localization, one can reduce to studying small surface-patches S near a given point x^{0}. Denoting by p_{c} the minimal Lebesgue exponent such that \mathcal{M}_{S} is $L^{p_{-}}$ bounded for $p>p_{c}$, I shall first explain a new "geometric" conjecture on how the critical exponent p_{c} might be determined by means of a geometric measure theoretic condition, which measures in some sense the order of contact of arbitrary ellipsoids with S.

The main part of the talk will then focus on hypersurfaces in \mathbb{R}^{3}, for which we are able by now to identify p_{c} for almost all analytic surfaces (with the exception of a small subclass \mathcal{A}^{e} of surfaces exhibiting singularities of type \mathcal{A} at x^{0}), by means of quantities which can be determined from associated Newton polyhedra. Besides the well-known notion of height at x^{0}, a new quantity, which we call the effective multiplicity, turns out to play a crucial role here.

Our recent results lead in particular to a proof of the "geometric" conjecture for all analytic 2-surfaces which are not of exceptional class \mathcal{A}^{e}, as well as the proof of a conjecture by Iosevich-Sawyer-Seeger for arbitrary analytic 2-surfaces.

